		Calibration		External Validation	Decomposition	Forecasting	
000000	0000000	00	000000000	0000	0000	00	0

Disentangling Credit Spreads and Equity Volatility Job Market Paper

Adrien d'Avernas, UCLA

Introduction		Calibration			Decomposition	Forecasting	
00000	0000000	00	000000000	0000	0000	00	0

What Drives Predictors of the Business Cycle?

Financial indicators are powerful predictors of economic activity.

equity volatility and corporate bond credit spreads (Bloom 09, GZ 12)

No generally accepted understanding of what shocks drive these indicators.

source of the predictive content

I propose a structural framework to quantify the drivers of financial indicators.

dynamic capital structure model with liquidity frictions

Introduction		Calibration			Decomposition	Forecasting	
000000	0000000	00	000000000	0000	0000	00	0
Potentia	I Driving	Forces					

- firms' asset values
- firms' aggregate asset volatility
- firms' idiosyncratic asset volatility

- bankruptcy costs
- stochastic discount factor
- liquidity frictions

structurally estimated from 300,887 monthly firm-level observations of

- corporate bond credit spreads (Lehman/Warga and Merrill Lynch)
- equity prices and equity volatilities (CRSP)
- accounting statements (Compustat)
- bond recovery ratios (Moody)

Introduction		Calibration			Decomposition	Forecasting	
000000	0000000	00	000000000	0000	0000	00	0
Potentia	I Driving	Forces					

- firms' asset values
- firms' aggregate asset volatility
- firms' idiosyncratic asset volatility

- bankruptcy costs
- stochastic discount factor
- liquidity frictions

structurally estimated from 300,887 monthly firm-level observations of

- corporate bond credit spreads (Lehman/Warga and Merrill Lynch)
- equity prices and equity volatilities (CRSP)
- accounting statements (Compustat)
- bond recovery ratios (Moody)

Introduction		Calibration			Decomposition	Forecasting	
000000	0000000	00	000000000	0000	0000	00	0
Potentia	I Driving	Forces					

- firms' asset values
- firms' aggregate asset volatility
- firms' idiosyncratic asset volatility
- bankruptcy costs
- stochastic discount factor
- liquidity frictions

structurally estimated from 300,887 monthly firm-level observations of

- corporate bond credit spreads (Lehman/Warga and Merrill Lynch)
- equity prices and equity volatilities (CRSP)
- accounting statements (Compustat)
- bond recovery ratios (Moody)

Introduction		Calibration			Decomposition	Forecasting	
000000	0000000	00	000000000	0000	0000	00	0
Potentia	I Driving	Forces					

- firms' asset values
- firms' aggregate asset volatility
- firms' idiosyncratic asset volatility

- bankruptcy costs
- stochastic discount factor
- liquidity frictions

structurally estimated from 300,887 monthly firm-level observations of

- corporate bond credit spreads (Lehman/Warga and Merrill Lynch)
- equity prices and equity volatilities (CRSP)
- accounting statements (Compustat)
- bond recovery ratios (Moody)

Introduction		Calibration				Forecasting	
000000	0000000	00	000000000	0000	0000	00	0
Potentia	l Driving	Forces					

- firms' asset values
- firms' aggregate asset volatility
- firms' idiosyncratic asset volatility

- bankruptcy costs
- stochastic discount factor
- liquidity frictions

structurally estimated from 300,887 monthly firm-level observations of

- corporate bond credit spreads (Lehman/Warga and Merrill Lynch)
- equity prices and equity volatilities (CRSP)
- accounting statements (Compustat)
- bond recovery ratios (Moody)

Introduction		Calibration			Decomposition	Forecasting	
000000	0000000	00	000000000	0000	0000	00	0
Potentia	I Driving	Forces					

- firms' asset values
- firms' aggregate asset volatility
- firms' idiosyncratic asset volatility

- bankruptcy costs
- stochastic discount factor
- liquidity frictions

structurally estimated from 300,887 monthly firm-level observations of

- corporate bond credit spreads (Lehman/Warga and Merrill Lynch)
- equity prices and equity volatilities (CRSP)
- accounting statements (Compustat)
- bond recovery ratios (Moody)

Introduction		Calibration			Decomposition	Forecasting	
000000	0000000	00	000000000	0000	0000	00	0
External	Validatio	n					

The model yields predictions for the levels and joint macrodynamics of

- corporate bond credit spreads
- default risk
- excess bond premium
- bond bid-ask spreads

- equity volatility
- aggregate equity volatility
- idiosyncratic equity volatility
- leverage

Introduction	Model	Calibration	Estimation	External Validation	Decomposition	Forecasting	Conclusion
000000	0000000	00	000000000		0000	OO	O
Results							

(1) Model-implied financial indicators match historical counterparts.

(2) Shocks to firms' aggregate asset volatility are key for joint dynamics.

(3) Shocks to firms' aggregate asset volatility strongly predict economic activity.

Introduction		Calibration				Forecasting	
000000	0000000	00	000000000	0000	0000	00	0
Literatur	е						

Predictors of Real Economic Activity \triangleright source of the predictive content

Gilchrist, Yankov, and Zakrajšek (2009); Stock and Watson (2012); Gilchrist and Zakrajšek (2012); Faust, Gilchrist, Wright, and Zakrajšek (2013); Caldara, Fuentes-Albero, Gilchrist, and Zakrajšsek (2016); Gilchrist and Zakrajšek (2012); Kelly, Manzo, and Palhares (2016); López-Salido, Stein, and Zakrajšek (2016)

Credit Spreads

Collin-Dufresne, Goldstein, and Martin (2001); Longstaff, Mithal, and Neis (2005); Hackbarth, Miao, and Morellec (2006); Almeida and Philippon (2007); David (2008); Chen, Collin-Dufresne, and Goldstein (2009); Bhamra, Kuehn, and Strebulaev (2010)

Equity Volatility

\triangleright link with credit spreads

Schwert (1989), Campbell and Taksler (2003); Bloom (2009), Arellano, Bae, Kehoe (2012), Christiano, Motto, and Rostagno (2014); Atkeson, Eisfeldt, and Weill (2014); Jurado, Ludvigson, and Ng (2015); Herskovic, Kelly, Lustig, and Van Nieuwerburgh (2016)

Structural Models of Default and Liquidity \triangleright empirical estimation of shocks Merton (1974), Leland (1994); Chen (2010); He and Milbradt (2014); Chen, Cui, He, and Milbradt (2016)

\triangleright structural decomposition

	Model	Calibration		External Validation	Decomposition	Forecasting	
000000	000000	00	000000000	0000	0000	00	0

Model

	Model	Calibration			Decomposition	Forecasting	
000000	000000	00	000000000	0000	0000	00	0
Model (Overview						

- firms have access to productive assets
- debt and equity as liabilities
- tax shield and bankruptcy costs
- stochastic discount factor
- liquidity as in Chen, Cui, He, and Milbradt (2016)

structurally estimate shocks driving credit spreads and equity volatility

	Model	Calibration					
000000	000000	00	000000000	0000	0000	00	0
Firms' A	Assets						

Type-j firm's asset cash flows follow a diffusion

$$\frac{dy_{it}}{y_{it}} = \mu^j_{Y,F} dt + \sigma^j_{Y,A}(s_t) dZ^A_t + \sigma^j_{Y,I}(s_t) dZ^I_{it} \qquad \qquad \textbf{asset value}$$

Shocks on fundamental parameters follow a Markov chain $s_t \in \{1, \dots, S\}$

• aggregate asset volatility $\sigma_{Y,A}^j(s_t)$

• idiosyncratic asset volatility
$$\sigma_{Y,I}^j(s_t)$$

	Model	Calibration			Decomposition	Forecasting	
000000	000000	00	000000000	0000	0000	00	0
Equity a	nd Debt						

Equity holders earn

$$y_{it} - (1 - \tau)c^{j} + m(D^{j}(y_{it}; s_{t}) - p)$$

where

- au tax shield; c^j coupon payment; p principal; 1/m debt maturity
- $D^{j}(y_{it}; s_t)$ endogenous debt value
- equity holders optimally choose when to default

Upon bankruptcy, bondholders receive

$$(1 - \alpha^j(s_t))V^j(y_{it}; s_t)$$

where

- $\alpha^{j}(s_{t})$ fraction lost to bankruptcy costs
- $V^{j}(y_{it};s_{t})$ value of firm's unlevered assets

Stochastic discount factor is given by

$$\frac{d\Lambda_t}{\Lambda_t} = -r(s_t)dt - \eta(s_t)dZ_t^A + \sum_{s_t \neq s_{t^{-}}} \Big(\kappa(s_{t^{-}}, s_t) - 1\Big)\Big(dN(s_{t^{-}}, s_t) - \zeta(s_{t^{-}}, s_t)\Big)$$

where

- r(s) the risk-free rate; $\eta(s)$ market price of risk
- N(s,s') Poisson jumps; $\zeta(s,s')$ transition intensity
- $\kappa(s,s')$ jump-risk premium

 $2S+(S^2-S)/2$ parameters to calibrate for $r(s),\,\eta(s),$ and $\kappa(s,s')$

	Model	Calibration		External Validation	Decomposition	Forecasting	
000000	0000000	00	000000000	0000	0000	00	0
Paramet	trization						

Three assumptions similar to Chen (2010):

- Epstein-Zin preferences
- aggregate production:

$$\frac{dY_t}{Y_t} = \mu_Y(s_t)dt + \sigma_Y(s_t)dZ_t^A$$

• systemic volatility $\sigma_Y(s_t)$ and firms' aggregate asset volatility $\sigma_{Y,A}(s_t)$:

$$\sigma_{Y,A}(s_t) = \bar{\sigma}_{Y,A} + \theta \left(\sigma_Y(s_t) - \bar{\sigma}_Y \right)$$

With these assumptions, 5 + S parameters to calibrate:

- relative risk aversion γ ; intertemporal substitution ψ ; time discount rate ρ
- long-run volatility $\bar{\sigma}_Y$; sensitivity θ ; growth rates μ_Y

► more

	Model	Calibration				Forecasting	
000000	0000000	00	000000000	0000	0000	00	0
Liquidity							

- over-the-counter search frictions as in Chen, Cui, He, and Milbradt (2016)
- it takes time to find an intermediary
- investors hit by a liquidity shock bear a holding cost

 $\chi(N - P^j(y;s))$

- Nash bargaining generates bid-ask spreads
- bid-ask spreads are endogenous

	Model	Calibration				Forecasting	
000000	000000	00	000000000	0000	0000	00	0
Solution							

Finding firms' asset, equity, and bond prices

$$\left\{V^{j}(y;s), E^{j}(y;s), D^{H,j}(y;s), D^{L,j}(y;s)\right\}_{s \in S; j \in J}$$

requires to solve a system of second order ordinary differential equations with endogenous default boundary conditions.

	Calibration		Decomposition	Forecasting	
	0				

Calibration

Introduction	Model	Calibration	Estimation	External Validation	Decomposition	Forecasting	Conclusion
000000	0000000	●O	000000000		0000	00	O
Asset R	eturn Dri	ft					

$$\frac{dy_{it}}{y_{it}} = \mu_{Y,F}^j dt + \sigma_{Y,A}^j(s_t) dZ_t^A + \sigma_{Y,I}^j(s_t) dZ_{it}^I$$

 \bullet drift $\mu^j_{Y,F}$ affects overall match between credit spreads and leverage

• calibrated to target the 8-10 years cumulative default rate from Moody

		Calibration			Decomposition	Forecasting	
000000	0000000	00	000000000	0000	0000	00	0
Paramet	ers						

Unramotrizatio	
Falametrizatio	n

relative risk aversion	γ	7.5	Bansal and Yaron (2004)				
intertemporal substitution	$\dot{\psi}$	1.5	Bansal and Yaron (2004)				
time discount rate	ρ	0.02	Bansal and Yaron (2004)				
systemic volatility	$\overline{\sigma}_Y$	0.0293	Bansal and Yaron (2004)				
tax shield	au	0.15	Graham (2003)				
bargaining power	β	0.03	Feldhütter (2012)				
meeting intensity	λ	50	Chen, Cui, He, and Milbradt (2015)				
liquidity shock intensity	ξ	0.7	Chen, Cui, He, and Milbradt (2015)				
Calibration							
$\Delta \sigma_{Y,A}(s) / \Delta \sigma_Y(s)$	θ	6	average equity premium				
holding cost slope	χ	0.06	average bid-ask spreads				
holding cost intercept	N	0.12	average bid-ask spreads				
average debt maturity	1/m	8	average maturity				

		Calibration	Estimation	External Validation	Decomposition	Forecasting	
000000	0000000	00	•00000000	0000	0000	00	0

Estimation

		Calibration	Estimation			Forecasting	
000000	0000000	00	00000000	0000	0000	00	0
Firm-leve	el Model	Variables	$x^i(t s)$				

I invert the model to infer firm-level model variables from observations.

observations

- market equity/book debt
- aggregate equity volatility
- idiosyncratic equity volatility
- bond recovery ratio

model variables

- firms' asset value
- aggregate asset volatility
- idiosyncratic asset volatility
- bankruptcy costs

Mapping between Aggregate Equity and Asset Volatility

The model maps observations to model variables.

States estimated with Baum-Welch algorithm for hidden Markov models

- (1) Initiate with values for the Markov chain $\mathcal{M} = \left\{ \sigma_{Y,A}^{j}(s), \sigma_{Y,I}^{j}(s), \zeta(s,s') \right\}$
- (2) Solve the structural model and estimate $\mathcal{Y} = \left\{ \sigma_{Y,A}^{j}(t|s), \sigma_{Y,I}^{j}(t|s) \right\}$
- (3) Maximize the likelihood of being in state s at time t given $\mathcal Y$
- (4) Get new estimates of firms' aggregate and idiosyncratic asset volatilities

$$\sigma_{Y,A}^{j}(s) = \frac{\sum_{t=1}^{T} \sigma_{Y,A}^{j}(t|s) \mathbf{1} \{s_{t} = s\}}{\sum_{t=1}^{T} \mathbf{1} \{s_{t} = s\}} \quad \sigma_{Y,I}^{j}(s) = \frac{\sum_{t=1}^{T} \sigma_{Y,I}^{j}(t|s) \mathbf{1} \{s_{t} = s\}}{\sum_{t=1}^{T} \mathbf{1} \{s_{t} = s\}}$$

- (5) Update transition intensities $\zeta(s,s')$ with historical transitions
- (6) Iterate on 2-5 until convergence

		Calibration	Estimation			Forecasting	
000000	0000000	00	000000000	0000	0000	00	0
Firms'	Types						• mapping

I solve the model for two types j of firms: investment- and speculative grade.

Thus, I structurally estimate

- firms' asset value y_{it}
- aggregate asset volatility $\sigma_{Y,A}^j(s_t)$
- idiosyncratic asset volatility $\sigma_{Y,I}^j(s_t)$
- bankruptcy costs $\alpha^j(s_t)$

for month t, firms i, firms' types j, and states s_t .

		Calibration	Estimation		Decomposition	Forecasting	
000000	000000	00	000000000	0000	0000	00	0

Investment-Grade Aggregate Asset Volatility 0.4 $\sigma_{Y,A}(t|s)$ 0.35 $\sigma_{Y,A}(s)$ 0.3 0.25 0.2 0.15 0.1 0.05 0 1973 1977 1981 1985 1989 1993 1998 2002 2006 2010 2014 Speculative-Grade Aggregate Asset Volatility 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0 1973 2014 1977 1981 1985 1989 1993 1998 2002 2006 2010

		Calibration	Estimation		Decomposition	Forecasting	
000000	0000000	00	000000000	0000	0000	00	0

Investment-Grade Idiosycratic Asset Volatility 0.4 $\sigma_{Y,I}(t|s)$ 0.35 $\sigma_{Y,I}(s)$ 0.3 0.25 0.2 0.15 0.1 0.05 0 1973 1977 1981 1985 1989 1993 1998 2002 2006 2010 2014 Speculative-Grade Idiosyncratic Asset Volatility 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0 └── 1973 1977 1981 1985 1989 1993 1998 2002 2006 2010 2014

		Calibration	Estimation		Decomposition	Forecasting	
000000	0000000	00	0000000000	0000	0000	00	0

Investment-Grade Aggregate Equity Volatility

		Calibration	Estimation		Decomposition	Forecasting	
000000	0000000	00	000000000	0000	0000	00	0

data 0.8 model 0.6 0.4 0.2 0 └___ 1973 Speculative-Grade Idiosyncratic Equity Volatility 0.8 0.6 0.4 0.2

Investment-Grade Idiosycratic Equity Volatility

		Calibration	Estimation		Decomposition	Forecasting	
000000	0000000	00	00000000	0000	0000	00	0
Equity ar	nd Bond	Premia					

	e	bond premium		
	model	model	data	model
	1973–2014	1987–2014	1987–2014	1973–2014
investment-grade	520 bps	611 bps	622 hpc	40 bps
speculative-grade	564 bps	656 bps		86 bps

sharpe ratio and systemic volatility

	Calibration	External Validation	Decomposition	Forecasting	
		0000			

External Validation

		Calibration		External Validation	Decomposition	Forecasting	
000000	0000000	00	000000000	•000	0000	00	0

		Calibration		External Validation	Decomposition	Forecasting	
000000	0000000	00	000000000	0000	0000	00	0
Goodnes	ss of Fit						

	$R2(cs_t, \hat{cs}_t)$	$R2(\Delta cs_t, \Delta \widehat{cs}_t)$
investment-grade firms	0.61	0.70
speculative-grade firms	0.71	0.74

Goodness of Fit for Credit Spreads in Levels and First Differences The variable cs_t is the average of credit spreads within a rating class, while \hat{cs}_t corresponds to the model prediction. When taking first differences, the series are first averaged over each year.
		Calibration		External Validation	Decomposition	Forecasting	
000000	0000000	00	000000000	0000	0000	00	0

	Calibration	External Validation	Forecasting	
		0000		

	Calibration	External Validation	Decomposition	Forecasting	
			0000		

Decomposition

	Calibration		Decomposition	Forecasting	
			0000		

NO LIQUIDITY FRICTIONS

Introduction	Model	Calibration	Estimation	External Validation	Decomposition	Forecasting	Conclusion
000000	0000000	00	000000000		0●00	OO	O

NO SHOCKS TO DEFAULT LOSSES

Introduction 000000	Model 0000000	Calibration 00	Estimation 000000000	External Validation	Decomposition 0●00	Forecasting OO	

NO SHOCKS TO IDIOSYNCRATIC VOLATILITY

Introduction 000000	Model 0000000	Calibration 00	Estimation 000000000	External Validation	Decomposition 0●00	Forecasting OO	

NO SHOCKS TO AGGREGATE VOLATILITY

Introduction 000000	Model 0000000	Calibration 00	Estimation 000000000	External Validation	Decomposition 0●00	Forecasting OO	

NO SHOCKS TO MARKET PRICE OF RISK

Introduction	Model	Calibration	Estimation	External Validation	Decomposition	Forecasting	Conclusion
000000	0000000	00	000000000		0●00	00	O

NO SHOCKS TO MARKET PRICE OF RISK AND AGGREGATE VOLATILITY

	Calibration	External Validation	Decomposition	Forecasting	
			0000		

NO MARKOV STATES

Decomposition 0000

Histograms of Estimated Aggregate Shocks to Firms' Asset Values

With Macroeconomic Shocks

		Calibration			Decomposition	Forecasting	
000000	0000000	00	000000000	0000	0000	00	0

NO LIQUIDITY FRICTIONS

		Calibration			Decomposition	Forecasting	
000000	0000000	00	000000000	0000	0000	00	0

NO SHOCKS TO DEFAULT LOSSES

Introduction	Model	Calibration	Estimation	External Validation	Decomposition	Forecasting	Conclusion
000000	0000000	00	000000000		000●	OO	O

NO SHOCKS TO MARKET PRICE OF RISK

Introduction	Model	Calibration	Estimation	External Validation	Decomposition	Forecasting	Conclusion
000000	0000000	00	000000000		000●	OO	O

NO SHOCKS TO IDIOSYNCRATIC VOLATILITY

Introduction 000000	Model 0000000	Calibration 00	Estimation 000000000	External Validation	Decomposition 0000	Forecasting 00	

NO SHOCKS TO AGGREGATE VOLATILITY

	Calibration	External Validation	Decomposition	Forecasting	
			0000		

NO MARKOV STATES

	Calibration	External Validation	Forecasting	
			0	

Forecasting

Introduction	Model	Calibration	Estimation	External Validation	Decomposition	Forecasting	Conclusion
000000	0000000	00	000000000		0000	●O	O
Approxin	nation						

An excellent approximation to firms' aggregate asset volatility is given by:

$$\log\left(\sigma_{Y,A}(t)\right) = \frac{1}{N} \sum_{i=1}^{N} \left[\log\left(E_{it}/A_{it}\right) + \log\left(\sigma_{E,A}^{i}(t)\right)\right]$$

where

- A_{it} firm's i total asset value
- E_{it} firm's *i* equity value
- $\sigma^i_{E,A}(t)$ firm's i aggregate equity volatility

Introduction	Model	Calibration	Estimation	External Validation	Decomposition	Forecasting	Conclusion
000000	0000000	00	000000000		0000	O●	O
Forecast	ing Porfo	rmanco					

Forecasting	P	er	for	ma	an	ce	
-------------	---	----	-----	----	----	----	--

Real GDP Growth 4-Quarters Ahead Forecast Horizon

			-		
	(1)	(2)	(3)	(4)	(5)
FED	0.260**	-0.045	0.085	-0.072	-0.119
TSLO	0.491^{***}	0.405***	0.429***	0.346***	0.349***
GZ		-0.510 ^{***}			-0.263**
$\sigma_{Y,A}^{INV}$			-0.356***		
$\sigma^{SPE}_{Y,A}$				-0.514***	-0.339***
Adj. R^2	0.17	0.32	0.26	0.34	0.36

 $^{\ast\ast\ast}p<0.01,\ ^{\ast\ast}p<0.05,\ ^{\ast}p<0.1;$ standardized coefficients

	Calibration	External Validation	Decomposition	Forecasting	Conclusion
					•

Conclusion

Introduction 000000	Model 0000000	Calibration 00	Estimation 000000000	External Validation	Decomposition 0000	Forecasting OO	Conclusion
Conclusio	on						

- Aggregate asset volatility is key to account for joint dynamics of credit spreads and equity volatility.
- Aggregate asset volatility strongly forecasts economic activity and captures the informational predictive content of credit spreads.
- Measuring aggregate asset volatility does not require departures from Modigliani and Miller's (1958) assumptions.

Stochastic Discount Factor Solution (1/2)

The Hamilton-Jacobi-Bellman equation in state s (for s = 1, ..., S) is

$$0 = f(C, J(C, s)) + J_C(C, s)C\mu_Y(s) + \frac{1}{2}J_{CC}(C, s)C^2\sigma_Y^2(s)$$

$$+\sum_{s'\neq s} \zeta_{s,s'}^{\mathcal{P}}(J(C,s') - J(C,s)).$$

Conjecture that the solution for J is

$$J(C,s) = \frac{(h(s)C)^{1-\gamma}}{1-\gamma}$$

and we get

$$0 = \rho \frac{1-\gamma}{1-\delta} h(s)^{\delta-\gamma} + \left[(1-\gamma)\mu_Y - \frac{1}{2}\gamma(1-\gamma)\sigma_Y^2(s) - \rho \frac{1-\gamma}{1-\delta} \right] h(s)^{1-\gamma} + \sum_{s' \neq s} \zeta_{s,s'}^{\mathcal{P}} \left(h(s')^{1-\gamma} - h(s)^{1-\gamma} \right)$$

While no algebraic solution exists for this system of nonlinear equations, it is trivial to solve numerically for $h(s) \forall s \in \{1, \dots, S\}$.

Stochastic Discount Factor Solution (2/2)

Duffie and Skiadas (1994) show that the stochastic discount factor is equal to

$$\Lambda_t = \exp\left(\int_0^t f_J(C_u, J_u) du\right) f_C(C_t, J_t)$$

Thus we have

$$\Lambda_t = \exp\left(\int_0^t \frac{\rho(1-\gamma)}{1-\delta} \left(\left(\frac{\delta-\gamma}{1-\gamma}\right)h(s_u)^{\delta-1} - 1\right)du\right)\rho H(s)^{\delta-\gamma}Y^{-\gamma}$$

Applying Ito's formula with jumps, we get

$$\frac{d\Lambda_t}{\Lambda_t} = -r(s)dt - \eta(s)dZ_t^A + \sum_{s' \neq s} \left(e^{\kappa(s,s')} - 1 \right) dM_t^{s,s'},$$

where

$$r(s) = -\frac{\rho(1-\gamma)}{1-\delta} \left[\frac{\delta-\gamma}{1-\gamma} h(s)^{\delta-1} - 1 \right] + \gamma \mu_Y(s) - \frac{1}{2}\gamma(1+\gamma)\sigma_Y^2(s)$$
$$-\sum_{s' \neq s} (e^{\kappa(s,s')} - 1)$$

$$\eta(s) = \gamma \sigma_Y(s)$$
 $\kappa(s, s') = (\delta - \gamma) \log\left(\frac{h(j)}{h(i)}\right)$

back

Average Log Corporate Bond Credit Spread by Rating Class

First Principal Components Correlation Matrix

	$\log(cs)$	lev	$\log(\sigma_E)$
log(cs)	1.00	0.71	0.74
lev	0.71	1.00	0.54
$\log(\sigma_E)$	0.74	0.54	1.00

This table displays the correlation between the first principal components of each variable averaged by rating class where

- log(cs) is log credit spread
- lev is market leverage
- $\log(\sigma_E)$ is log equity return total volatility

Co-movements in Credit Spreads, Leverage, and Equity Volatility

First Principal Components of Credit Spreads, Leverage, and Equity Return Volatility

The first principal component of credit spreads, leverage, and equity return volatility by rating classes explains 78% of the total variation.

Let X_t be a discrete hidden random variable with N possible values. We assume that $P(X_t|X_{t-1})$ is independent of time t, which leads to the definition of the time independent stochastic transition matrix $\mathbf{A} = \{a_{ij}\}$ where $a_{ij} = P(X_t = j|X_{t-1} = i)$. The initial state distribution is given by $\boldsymbol{\mu}_0$. The observation variables Y_t can take one of K possible values. The probability of a certain observation at time t for state j is given by

$$\ell_j(y_t) = P(Y_t = y_t | X_t = j).$$

We will represent the observation density as follows: for every $y \in F$, we define the diagonal matrix $\mathbf{L}(y)$ with nonzero elements $\{\mathbf{L}(y)\}_{ii} = \ell_i(y)$. An observation sequence is given by $Y = (Y_0 = y_0, Y_2 = y_2, ..., Y_T = y_T)$. Thus we can describe a hidden Markov chain by $\boldsymbol{\theta} = (\mathbf{A}, \mathbf{L}, \boldsymbol{\mu}_0)$. The Baum-Welch algorithm finds a local maximum for $\boldsymbol{\theta}^* = \arg \max_{\boldsymbol{\theta}} P(Y|\boldsymbol{\theta})$.

Baum-Welch Algorithm 2/3

Initiation Set $\theta = (\mathbf{A}, \mathbf{L}, \boldsymbol{\mu}_0)$ with random initial conditions.

Forward procedure Let $\pi_{i,t} = P(Y_0 = y_0, ..., Y_t = y_t, X_t = i|\theta)$ be the probability of seeing the $y_0, y_1, ..., y_t$ and being in state *i* at time *t*. First, we get

$$c_0 = \mathbf{1}' \mathbf{L}(y_0) \boldsymbol{\mu}_0,$$

$$\boldsymbol{\pi}_0 = \mathbf{L}(y_0)\boldsymbol{\mu}_0/c_0.$$

Then for $k = 1, \ldots, N$

Baum-Welch Algorithm 3/3

Backward procedure Let $\beta_{i,t} = P(Y_{t+1} = y_{t+1}, ..., Y_T = y_T | X_t = i, \theta)$ that is the probability of the ending partial sequence $y_{t+1}, ..., y_T$ given starting state i at time t. We calculate $\beta_{i,t}$ as

$$\boldsymbol{\beta}_{N|N} = \mathbf{1}/c_N$$

then or $k = 1, \ldots, N$

$$\boldsymbol{\beta}_{N-k|N} = \mathbf{AL}(y_{N-k+1})\boldsymbol{\beta}_{N-k+1|N}/c_{N-k},$$

$$\boldsymbol{\pi}_{N-k,N-k+1|N} = \mathsf{diag}(\boldsymbol{\pi}_{N-k}) \mathbf{AL}(y_{N-k+1}) \mathsf{diag}(\boldsymbol{\beta}_{N-k+1|N})$$

$$\boldsymbol{\pi}_{N-k|N} = \boldsymbol{\pi}_{N-k,N-k+1|N} \mathbf{1},$$

where $\pi_{i,N-k|N} = P(X_t = i|Y, \theta)$ is the probability of being in state *i* at time *t* given the observed sequence *Y* and the parameters θ . We can now update θ as

$$\boldsymbol{P}_{ij} = rac{\sum_{k=1}^{n} (\boldsymbol{\pi}_{k-1,k|N})_{ij}}{\sum_{k=1}^{N} (\boldsymbol{\pi}_{k-1|N})_{i}},$$

$$\mu_0 = \pi_{0|N}$$

and the parameters of $\mathbf{L}(\cdot)$ as their empirical counterparts.

Value of firm's assets given by

 $V_t = y_t v(s_t),$

where $v(\cdot)$ is the state dependent price-earning ratio. Thus,

$$\frac{dV_t}{V_t} = \mu_Y dt + \sigma_{Y,A}(s_t) dZ_t^A + \sigma_{Y,I}(s_t) dZ_t^I + \sum_{s_t \neq s_{t^-}} \left(v(s_{t^-})/v(s_t) - 1 \right) dN_t^{(s_{t^-},s_t)},$$

where $v(s_{t^-})/v(s_t)$ represents jump in asset value from state s_{t^-} to state s_t

Strong Aggregate Common Factor

Average Log Corporate Bond Credit Spreads by Rating Class

The first principal component explains 90% of the overall variation. Equity return volatility and leverage are also driven by a strong common factor (93% and 72%).

Co-movements in Credit Spreads, Leverage, and Equity Volatility

First Principal Components of Credit Spreads, Leverage, and Equity Return Volatility

The first principal component of credit spreads, leverage, and equity return volatility by rating classes explains 78% of the total variation.

System of Second Order Ordinary Differential Equations

$$r_{s}D_{s}^{H}(y) = \mu_{s}\frac{\partial D_{s}^{H}(y)}{\partial y} + 0.5\sigma_{s}^{2}\frac{\partial^{2}D_{s}^{H}(y)}{\partial y^{2}} + c + m(p - D_{s}^{H}(y)) + \sum_{s' \neq s}\zeta_{Q}^{ss'}(D_{s'}^{H}(y) - D_{s}^{H}(y)) + \xi^{H}(D_{s}^{L}(y) - D_{s}^{H}(y))$$

$$r_s D_s^L(y) = \mu_s \frac{\partial D_s^L(y)}{\partial y} + 0.5\sigma_s^2 \frac{\partial^2 D_s^L(y)}{\partial y^2} + c + m(p - D_s^L(y))$$
$$+ \sum_{s' \neq s} \zeta_{\mathcal{Q}}^{ss'}(D_{s'}^L(y) - D_s^L(y)) + \lambda\beta(D_s^H(y) - D_s^L(y))$$
$$\approx \gamma(P_s + N_s - P_s(y))$$

$$-\chi(B_s+N-P_s(y))$$

$$r_s E_s(y) = \mu_s \frac{\partial E_s(y)}{\partial y} + 0.5\sigma_s^2 \frac{\partial^2 E_s(y)}{\partial y^2} + \exp(y) - (1-\tau)c + m(D_s^H(y) - p)$$
$$+ \sum_{s' \neq s} \zeta_{\mathcal{Q}}^{ss}(E_i(y) - E_s(y))$$

back
Match firm's leverage with model-implied log asset return y according to

1

$$ev = \frac{p}{p + E_s(y)},$$

where p (principal) is the book value of outstanding debt. Thus, model-implied values of equity and debt are matched to their empirical counterparts.

I use 300,887 monthly observations of equity prices from CRSP and book value of debt from Compustat between 1973 and 2014. The model implied leverage distribution matches exactly the empirical leverage distribution in every month.

From Ito's lemma, I can estimate firms' asset volatility according to:

$$\sigma_{E,A}^{i}(t|s)E_{s}^{j}\left(y_{t}^{i}\right) = E_{j,s'}\left(y_{t}^{i}\right)\sigma_{Y,A}(s),$$

$$\sigma_{E,I}^{i}(t|s)E_{s}^{j}\left(y_{t}^{i}\right) = E^{j,s'}\left(y_{t}^{i}\right)\sigma_{Y,I}(s).$$

- y_t^i is the model-implied level of cash flows of firm i at time t
- $E_s^j(y)$ is the equity value of firms of type j
- $\sigma^i_{E,A}(t|s)$ is aggregate asset volatility of firm i at time t in state s
- $\sigma^i_{E,I}(t|s)$ is idiosyncratic asset volatility of firm i at time t in state s

Bankruptcy Costs Estimation

The bond recovery ratio in state s is given by

$$\frac{(1-\alpha(s))Vb(s)}{p}$$

- p is the principal of the debt
- Vb(s) is the value of firm's assets at bankruptcy
- α is the fraction lost to bankruptcy costs

Aggregate and Idiosyncratic Equity Volatility

Idiosyncratic returns are constructed by estimating a factor model using all observations for that firm following:

$$r_t^i - r_t^f = \gamma_0^i + \mathbf{F}_t \boldsymbol{\gamma}^i + \varepsilon_t^i,$$

where

- r_t^i is the equity return from day t-1 to t, including dividends of firm i
- r_t^f is the 1-month treasury bill rate
- \mathbf{F}_t is the Fama and French (1992) and Carhart (1997) 4-factor model

Aggregate and idiosyncratic equity volatility is then given by:

$$\sigma_{E,A}^{i}(t) = \sqrt{\frac{1}{K_t} \sum_{k=L_t-63}^{L_t} \left(\mathbf{F}_k \widehat{\boldsymbol{\gamma}}^i\right)^2} \sigma_{E,I}^{i}(t) = \sqrt{\frac{1}{K_t} \sum_{k=L_t-63}^{L_t} \left(\widehat{\boldsymbol{\varepsilon}}_k^i\right)^2},$$

where L_t is the last day in month t.

Market leverage ratio of firm i at time t is defined as:

$$\mathsf{lev}_{it} = \frac{\mathsf{DLTT}_{it} + \mathsf{DLC}_{it}}{\mathsf{DLTT}_{it} + \mathsf{DLC}_{it} + \mathsf{CSHO}_{it} \times \mathsf{PRCC}_{it}},$$

- DLTT is Compustat long-term debt
- DLC is Compustat debt in current liabilities
- CSHO is CRSP number of shares outstanding
- PRCC is CRSP stock price

Market Price of Aggregate Shocks and Systemic Volatility

Value of firm's assets given by

 $V_t = y_t v(s_t),$

where $v(\cdot)$ is the state dependent price-earning ratio. Thus,

$$\frac{dV_t}{V_t} = \mu_Y dt + \sigma_{Y,A}(s_t) dZ_t^A + \sigma_{Y,I}(s_t) dZ_t^I + \sum_{s_t \neq s_{t^-}} \left(v(s_{t^-})/v(s_t) - 1 \right) dN_t^{(s_{t^-},s_t)},$$

where $v(s_{t-})/v(s_t)$ represents jump in asset value from state s_{t-} to state s_t .

I solve the model F for two types j of firms: investment- and speculative-grade.

$$F(y^{i}(t); s, x^{j}(s)) \to x^{i}(t|s) \to x^{j}(t|s) \to x^{j}(s)$$

$$x^{j}(t|s) = \frac{1}{N^{j}(t)} \sum_{i \in I^{j}(t)} x^{i}(t|s)$$

$$x^{j}(s) = \frac{\sum_{t=1}^{T} x^{j}(t|s) \mathbf{1} \{s_{t} = s\}}{\sum_{t=1}^{T} \mathbf{1} \{s_{t} = s\}}$$