Financial Risk Capacity

Saki Bigio ¹ Adrien d'Avernas ²

 1 University of California, Los Angeles 2 Stockholm School of Economics

June 29, 2019

Introduction

- Many financial crises begin with a collapse of banks' net worth
- Financial sector's capacity to intermediate capital decreases
- Economic activity falls as capital intermediation is suboptimal
- ▷ Why banks can't raise equity in times of crisis?

Introduction

- Many financial crises begin with a collapse of banks' net worth
- Financial sector's capacity to intermediate capital decreases
- Economic activity falls as capital intermediation is suboptimal
- > Why banks can't raise equity in times of crisis?

"Mr. Chairman, when will the crisis be over?"

Interviewer, 60 Minutes

"When banks start raising capital on their own."

Ben Bernanke

Why banks can't raise equity in times of crisis?

- Financial assets easily reallocated, recapitalization should be fast
- Other papers: additional frictions to prevent equity injections
- Banking theory: banks mitigate asymmetric information
- This paper: adverse selection is exacerbated by low bank net worth
 - Intermediation becomes less profitable
 - Reduces incentives to recapitalize banks

Insights

- Adverse selection is aggravated by low bank net worth
- Intermediation becomes less profitable with lower intermediation volumes
 - > Bankers do not want to inject equity during crisis
- Generates amplification and persistence of banking crises

Environment

- Discrete-time, infinite horizon
- Consumption good and capital
- Unit mass of producers: produce consumption goods or capital
 - \triangleright *C*-producers technology: y = ak
 - $\triangleright \ K\text{-producers technology: } k=y/\kappa$
- Need for exchange
 - ▷ K-producers: lack consumption input for building capital
 - ▷ C-producers: lack investment opportunities to accumulate capital
- Unit mass of bankers intermediate capital
 - Capital intermediation is risky
 - > Limited liability constraint: need wealth to sustain potential losses

Heterogeneous Capital Quality

- Capital stock divisible into continuum
- Each unit identified with quality $\varphi \in [0, 1]$
- $\lambda(\varphi, \phi)$ is the depreciation of a φ -unit of capital given aggregate shock ϕ

$$k_{t+1} = k_t \int \lambda(\varphi, \phi_t) d\varphi$$

- Once a φ -unit of capital is scaled by $\lambda(\varphi, \phi_t)$, it becomes homogeneous
- ullet Asymmetric information: buyer of capital do not know its quality φ
- Role for intermediation by banks
 - > Big banks have technology to pool qualities
 - Better risk absorption capacity (risk neutral)

Assumption 1

The depreciation function is such that: $\lambda(0, \phi) = 0$.

Assumption 2

The depreciation function $\lambda(\varphi, \phi)$ is monotone and increasing in φ .

 \triangleright $K\text{-}\mathsf{producers}$ sell every units of capital below a quality threshold $\overline{\varphi}$

Assumption 3

There is no aggregate risk: $\int_0^1 \lambda(\varphi, \phi) d\varphi = \overline{\lambda} \forall \phi$.

Average Quality below Treshold $\overline{\varphi}$: $\Lambda(\overline{\varphi}, \phi) = E[\lambda(\varphi, \phi)|\varphi \leq \overline{\varphi}, \phi]$

Average Quality below Treshold $\overline{\varphi}$: $\Lambda(\overline{\varphi}, \phi) = E[\lambda(\varphi, \phi)|\varphi \leq \overline{\varphi}, \phi]$

Average Quality below Treshold $\overline{\varphi}$: $\Lambda(\overline{\varphi}, \phi) = E[\lambda(\varphi, \phi)|\varphi \leq \overline{\varphi}, \phi]$

C-producers

Every period, a fraction $(1-\Delta)$ of producers become c-producers.

C-producers consume c^c or invest i^c in new units of capital at price p^d :

$$U^{c}(k,\eta) = \mathbb{E}_{\phi} \left[\max_{c^{c} \ge 0, i^{c} \ge 0} \left\{ \log(c) + \beta U(k',\eta') \right\} \right]$$

subject to their budget constraint:

$$c^c + p^d \, i^c = ak$$

and the law of motion for capital:

$$k' = k \int_0^1 \lambda(\varphi, \phi) d\varphi + i^c$$

K-producers

Every period, a fraction Δ of producers become $k\mbox{-}{\rm producers}.$

 $K\text{-}\mathsf{producers}$ choose threshold quality $\overline{\varphi},$ consumption $c^k,$ and production $i^k\colon$

$$U^{k}(k,\eta) = \max_{\overline{\varphi}} \left\{ \mathbb{E}_{\phi} \left[\max_{c^{k} \ge 0, i^{k}} \left\{ \log(c^{k}) + \beta U(k',\eta') \right\} \right] \right\}$$

subject to their budget constraint:

$$c^k + \kappa i^k = p^s \overline{\varphi} k$$

and the law of motion for capital:

$$k' = k \int_{\overline{\varphi}}^{1} \lambda(\varphi, \phi) d\varphi + i^{k}$$

Bankers

Bankers choose intermediation q, equity injection e, and dividend payouts d:

$$U^{b}(n,\eta) = \max_{e \ge 0, 1 \ge d \ge 0, q \ge 0} \left\{ d - e + \mathbb{E}_{\phi} \left[\beta U^{b}(n',\eta') \right] \right\}$$

subject to the law of motion for wealth:

$$n' = n + e - \Gamma(e) - (1 + \tau)d + q\pi(\overline{\varphi}, \phi)$$

and the limited liability constraint:

$$n' \ge 0 \quad \forall \phi$$

where

$$\pi(\overline{\varphi},\phi) = p^{d}(\overline{\varphi},\phi)\Lambda(\overline{\varphi},\phi) - p^{s}(\overline{\varphi})$$

and $\Lambda(\overline{\varphi},\phi)=\frac{\int_{0}^{\overline{\varphi}}\lambda(\varphi,\phi)d\varphi}{\overline{\varphi}}$ is the average quality of the pool of capital

State Space

There are two aggregate quantities of interest: the aggregate capital stock,

$$K = \int_0^1 k(z) dz,$$

and the equity of the entire financial system,

$$N = \int_0^1 n(j) dj$$

The aggregate state is summarized by $\{\eta, \phi\}$:

$$\eta \equiv N/K$$

Recursive Competitive Equilibrium

A recursive competitive equilibrium is

- (i) a set of price functions $\{p^s(\eta), p^d(\eta, \phi)\}$,
- (ii) a set of policy functions for $c\text{-producers}~\{c^c(k,\eta,\phi),i^c(k^c,\eta,\phi)\},$
- (iii) a set of policy functions for k-producers $\{\overline{\varphi}(k,\eta), c^k(k,\eta,\phi), i^k(k,\eta,\phi)\}$,
- (iv) a set of policy functions for bankers $\{e(n,\eta), d(n,\eta), q(n,\eta)\},$
- (v) a set of value functions $\{U^c(k,\eta), U^k(k,\eta), U^b(n,\eta)\},$ and
- (vi) a law of motion for the aggregate state $\eta'(\eta,\phi)$ such that:
 - The agents' policy functions (ii), (iii), and (iv) are solutions to their respective problems given prices (i) the law of motion for η (vi)
 - Markets for intermediation of capital, depreciated capital, and consumption goods clear

Supply Schedule $S(\overline{\varphi})$

The threshold policy is such that:

$$\overline{\varphi}(p^s) = \arg \max_{\widetilde{\varphi}} \mathbb{E}_{\phi} \left[\log \left(\kappa \int_{\widetilde{\varphi}}^1 \lambda(\varphi, \phi) d\varphi + p^s \widetilde{\varphi} \right) \right]$$

Demand Schedule

• From the market clearing conditions:

Demand Schedule

• From the market clearing conditions:

$$p^{d}(\overline{\varphi},\phi) = \frac{\beta a(1-\Delta)}{\overline{\varphi}\Lambda(\overline{\varphi},\phi)\Delta + (1-\beta)\overline{\lambda}(1-\Delta)}$$

• Demand schedule $D(\overline{\varphi})$:

$$D(\overline{\varphi}) = \mathbb{E}_{\phi} \left[\underbrace{p^d \left(\overline{\varphi}, \phi \right)}_{\substack{\text{substitution} \\ \text{effect}}} \underbrace{\Lambda \left(\overline{\varphi}, \phi \right)}_{\substack{\text{composition} \\ \text{effect}}} \right]$$

Demand Schedule

• From the market clearing conditions:

$$p^{d}(\overline{\varphi},\phi) = \frac{\beta a(1-\Delta)}{\overline{\varphi}\Lambda(\overline{\varphi},\phi)\Delta + (1-\beta)\overline{\lambda}(1-\Delta)}$$

• Demand schedule $D(\overline{\varphi})$:

$$D(\overline{\varphi}) = \mathbb{E}_{\phi} \left[\underbrace{p^d \left(\overline{\varphi}, \phi\right)}_{\substack{\text{substitution} \\ \text{effect}}} \underbrace{\Lambda \left(\overline{\varphi}, \phi\right)}_{\substack{\text{composition} \\ \text{effect}}} \right]$$

• Intermediation profits $\Pi(\overline{\varphi})$:

$$\Pi(\overline{\varphi}) = D(\overline{\varphi}) - S(\overline{\varphi})$$

Information Sensitivity

Given ϕ , the intermediation revenues are increasing in $\overline{\varphi}$,

$$\frac{\partial p^d(\overline{\varphi},\phi)\Lambda(\overline{\varphi},\phi)}{\partial \overline{\varphi}} > 0,$$

if and only if the following condition holds:

$$\frac{\lambda(\overline{\varphi},\phi) - \Lambda(\overline{\varphi},\phi)}{\overline{\varphi}} > \frac{[\Lambda(\overline{\varphi},\phi)]^2 \,\Delta}{(1-\beta)\overline{\lambda}(1-\Delta)}.$$

Information asymmetries need to weaken sufficiently fast as more capital is intermediated.

Capital Intermediation

• The banker intermediation volume is constrained by limited liability:

$$q = \frac{n + e - \Gamma(e) - (1 + \tau)d}{|\pi(\overline{\varphi}, \underline{\phi})|} \qquad \quad \text{if} \quad D(\overline{\varphi}) - S(\overline{\varphi}) > 0$$

• The value of inside equity is given by:

$$\theta(\eta) \equiv \beta \mathbb{E}_{\phi} \left[u^{b}(\eta') \right] + \max \left\{ \beta \mathbb{E}_{\phi} \left[u^{b}(\eta') \frac{\pi(\overline{\varphi}, \phi)}{|\pi(\overline{\varphi}, \phi)|} \right], 0 \right\}$$

where $U(n,\eta)=u^b(\eta)n$

• Bankers pay dividends if

$$\theta(\eta) < 1 - \tau$$

• Bankers inject equity if

 $\theta(\eta) > 1$

Solution

Intermediation Revenues $(D(\overline{\varphi}) - S(\overline{\varphi})) \times \overline{\varphi} \Delta K/N$

Dynamics

Dynamics

Conclusion

• Adverse selection generates non-monotone expected profits

• No incentives to recapitalize when intermediation volumes are low

• Prolonged recession following large losses in bankers' net worth