Government Guarantees and the Valuation of American Banks

Andrew G. Atkeson UCLA Economics, FRB MPLS

Andrea L. Eisfeldt

UCLA Anderson

Adrien d'Avernas

Stockholm School of Economics

Pierre-Olivier Weill

UCLA Economics

Are Banks Safer Now ? Yellen: Yes !

Are Banks Safer Now ? Sarin and Summers: No ! spreads

Market to Book Ratio of Equity

Market to Book Ratio of Equity

Franchise Value and Gov't Guarantees

Franchise Value of Equity (FE)

- value of intangible capital
- if franchise value drop, bank is closer to bankruptcy

Value of Gov't Guarantees (GOV)

- value of taking risk backed by gov't guarantees
- if gov't guarantee drop, lower taxpayer's liability

Accounting identity for market (ME) to book (BE) ratio of equity

ME/BE = 1 + FE/BE + GOV/BE

Measurement

Franchise Value of Equity (FE)

- fair value of loans v_L from bank annual report footnotes
- fair value of deposits v_D from core deposit intangibles

Value of Gov't Guarantees (GOV)

- Gordon growth dividend model
- data on accounting profitability and leverage

Accounting identity for market (ME) to book (BE) ratio of equity

ME/BE = 1 + FE/BE + GOV/BE

Empirical Accounting

We measure FE and GOV with banks accounting data

- \triangleright Before crisis, gov't guarantees account for 73% of ME/BE
- > After crisis, both components dropped a lot
 - banks would still default in a crisis, creditors at risk
 - gov't guarantees are now smaller, taxpayers safer

Our results reconcile Yellen with Sarin and Summers

Outline of Talk

- Accounting Model
- Calibration of Aggregate Credit Risk
- Valuation of Stylized Bank
- Valuation of American Bank

Gordon Growth Model for Accounting

• Time
$$t \in \{1, 2, 3, ...\}$$

- States $s \in S$ are i.i.d. under risk-neutral probability q(s)
- Constant risk-free rate i
- Assets: loans L
- Liabilities: deposits D, debt B, and book equity BE
- Assets and liabilities grow at the same rate g(s)
- Competitive markets in L and D subject to origination costs

Franchise Value of Equity (FE)

• Fair value of a one-dollar loan PV of: interest - servicing costs + principal payments - default $v_L >$ book value = 1

• Fair value of a one-dollar deposit PV of: interest + servicing costs + principal payments $v_D < \text{book value} = 1$

• Franchise value of equity per dollar of loans $FE = (v_L - 1) \times L - (v_D - 1) \times D$ lend at high rates, borrow at low rate

Market Value of Equity (ME)

• Dividends with excess return $R^e(s)$ on loans bought at v_L

$$div(s) = R^{e}(s) \times v_{L} \times L + (i - g(s)) \times (v_{L} \times L - v_{D} \times D - B)$$
$$- (1 - v_{B}) \times (1 + g(s)) \times B$$

• Market value of equity with default decision

$$\mathsf{ME} = \frac{1}{1+i} \sum_{s} q(s) \max\left\{0, \mathsf{div}(s) + (1+g(s))\mathsf{ME}\right\}$$

• What happens upon default?

gov't seizes the bank and injects cash to assist sale

Subordinated Debt

• Residual claimant in event of default by equity

$$v_B \times \mathsf{B} = \frac{1}{1+i} \sum_{s} q(s) \{ (1 - I(s))(1+i) \times \mathsf{B} + I(s)R(s) \}$$

where I(s) = 1 if equity holders decide to default

• Residual value of the bank is given by

$$R(s) = (1+i) \times \mathsf{B} + \mathsf{div}(s) + (1+g(s)) \times \mathsf{ME} + T(s)$$

sale of bank plus injection of taxpayer funds T(s)

• To preserve limited liability of subordinated debt holders

$$0 \le R(s) \le (1+i) \times \mathsf{B}$$

Gov't Guarantees (GOV)

• Define the market value of gov't guarantees GOV = PV of all future cash injections T(s)

• Modigliani Miller with gov't as negative stakeholder

ME = BE + FE + GOV

Gov't Guarantees (GOV)

• Define the market value of gov't guarantees GOV = PV of all future cash injections T(s)

• Modigliani Miller with gov't as negative stakeholder

$$\frac{\mathsf{ME}}{\mathsf{BE}} = 1 + \frac{\mathsf{FE}}{\mathsf{BE}} + \frac{\mathsf{GOV}}{\mathsf{BE}}$$

 $\bullet\,$ Two states: normal times s^n and crisis s^c

	RATING	AA	А	BBB	BB
DATA	2008 97-07/11-17	-4.9% 9bp	-12.5% 38bp	-16.3% 60bp	-25.9% 165bp
MODEL					

 $\bullet\,$ Two states: normal times s^n and crisis s^c

	RATING	AA	А	BBB	BB
DATA	2008 97-07/11-17	-4.9% 9bp	-12.5% 38bp	-16.3% 60bp	-25.9% 165bp
MODEL					

 $\bullet\,$ Match realized excess returns on bonds to calibrate $q(s^n)$

$$q(s^{n})R^{e}(s^{n}) + (1 - q(s^{n}))R^{e}(s^{c}) = 0$$

	RATING	AA	А	BBB	BB
DATA	2008 97-07/11-17	-4.9% 9bp	-12.5% 38bp	-16.3% 60bp	-25.9% 165bp
MODEL					

 $\bullet\,$ Match realized excess returns on bonds to calibrate $q(s^n)$

$$q(s^{n})R^{e}(s^{n}) + (1 - q(s^{n}))R^{e}(s^{c}) = 0$$

	RATING	AA	А	BBB	BB
DATA	2008 97-07/11-17	-4.9% 9bp	-12.5% 38bp	-16.3% 60bp	- <mark>25.9%</mark> 165bp
MODEL					

 $\bullet\,$ Match realized excess returns on bonds to calibrate $q(s^n)$

$$q(s^n)R^e(s^n) + (1 - q(s^n))R^e(s^c) = 0$$

	RATING	AA	А	BBB	BB
DATA	2008 97-07/11-17	- 4 .9 <mark>%</mark> 9bp	-12.5% 38bp	-16.3% 60bp	- <mark>25.9%</mark> 165bp
MODEL	$ q(s^n) = 0.95 $				

 $\bullet\,$ Match realized excess returns on bonds to calibrate $q(s^n)$

$$q(s^{n})R^{e}(s^{n}) + (1 - q(s^{n}))R^{e}(s^{c}) = 0$$

	RATING	AA	А	BBB	BB
DATA	2008 97-07/11-17	- 4.9% 9bp	-12.5% 38bp	-16.3% 60bp	- <mark>25.9%</mark> 165bp
MODEL	$q(s^n) = 0.95$	26bp	66bp	86bp	136bp

Stylized Bank

- No franchise value: assets and liabilities all marketable
- Bank assets have excess returns of corporate bond portfolios $R(s^c)-i \mbox{ from 2008 } R(s^n)-i \mbox{ from } q(s^n)=0.95$
- Bank liabilities fully insured

 $ROE(s) = (R(s) - i) \times \mathsf{L}/\mathsf{E} + i$

$$\frac{\mathsf{ME}}{\mathsf{BE}} = \max\left\{1, \frac{q(s^n)}{1+i-q(s^n)(1+g(s^n))}\left(ROE(s^n) - g(s^n)\right)\right\}$$

 \bullet Assume no franchise value, $i=5\%\text{, }g(s^n)=7.5\%$

$$\frac{\mathsf{ME}}{\mathsf{BE}} = \max\left\{1, \frac{q(s^n)}{1+i-q(s^n)(1+g(s^n))}\left(ROE(s^n) - g(s^n)\right)\right\}$$

		ra	ating of b	oank asse	ts
		AA	А	BBB	BB
$BK \ LEV = 0.90$	$ROE(s^n)$ ME/BE	7.5% 1	11.6% 1.35	13.6% 2.0	18.6% 3.68
$BK\;LEV=0.85$	$ROE(s^n)$ ME/BE	6.6% 1	9.4% 1	10.7% 1.06	14.1% 2.2

 \bullet Assume no franchise value, $i=5\%\text{, }g(s^n)=7.5\%$

$$\frac{\mathsf{ME}}{\mathsf{BE}} = \max\left\{1, \frac{q(s^n)}{1+i-q(s^n)(1+g(s^n))}\left(ROE(s^n) - g(s^n)\right)\right\}$$

			rating of bank assets			
			AA	А	BBB	BB
-	$BK \ LEV = 0.90$	$\begin{array}{c c} ROE(s^n) \\ \hline ME/BE \end{array}$	7.5% 1	11.6% 1.35	13.6% <mark>2.0</mark>	18.6% 3.68
	$BK\ LEV = 0.85$	$\begin{array}{c} ROE(s^n) \\ ME/BE \end{array}$	6.6% 1	9.4% 1	10.7% 1.06	14.1% 2.2

 \bullet Assume no franchise value, $i=5\%\text{, }g(s^n)=7.5\%$

$$\frac{\mathsf{ME}}{\mathsf{BE}} = \max\left\{1, \frac{q(s^n)}{1+i-q(s^n)(1+g(s^n))}\left(ROE(s^n) - g(s^n)\right)\right\}$$

			rating of bank assets			
			AA	А	BBB	BB
-	$BK \ LEV = 0.90$	$\begin{array}{c c} ROE(s^n) \\ \hline ME/BE \end{array}$	7.5% 1	11.6% 1.35	13.6% <mark>2.0</mark>	18.6% 3.68
	$BK\;LEV=0.85$	$\frac{ROE(s^n)}{ME/BE}$	6.6% 1	9.4% 1	10.7% 1.06	14.1% 2.2

• Taxpayers' contingent liability almost disappeared (Yellen)

- Taxpayers' contingent liability almost disappeared (Yellen)
- Debt and equity holders still at risk (Sarin and Summers)

Full Accounting Procedure

- Step 1: measure fair values to construct franchise value fair value of loans v_L from bank annual report footnotes fair value of deposits v_D from OTS and deposit intangibles
- Step 2: full accounting

get i, g, and $ROE(s^n)$ from data

$$\frac{\mathsf{ME}}{\mathsf{BE}} = \max\left\{\frac{\mathsf{BE} + \mathsf{FE}}{\mathsf{BE}}, \frac{q(s^n)}{1 + i - q(s^n)(1 + g(s^n))}(ROE(s^n) - g(s^n))\right\}$$

Fair Value of Loans

Data from footnotes of 19 large bank annual reports

Fair Value of Deposits

From Office of Thrift Supervision and whole bank transactions

Chart 3: CDI Recorded vs. Deposit Premiums Paid

Valuation of American Banks

 $\mathsf{ME}/\mathsf{BE} = 1 + \mathsf{FE}/\mathsf{BE} + \mathsf{GOV}/\mathsf{BE}$

	ME/BE	FE/BE	GOV/BE
1996 - 07	2.24	0.33	0.91
2011 - 17	1.19	0.10	0.09

- Taxpayers' contingent liability almost disappeared (Yellen)
- Debt and equity holders still at risk (Sarin and Summers)

Market to Book Ratio of Equity Rises from 1 to 2

Return on Assets for FDIC-Insured Banks

Big Increase in Profitability and Risk Taking after 1985

• Benchmark ROE for a bank with no asset risk

$$\overline{ROE} = i + (i - \overline{g}) \times \mathsf{FE}/\mathsf{BE}$$

	$ \overline{ROE}$	$ROE(s^n) - \overline{ROE}$
1970 - 85	9.1%	262bp
1996 - 07	6.2%	781bp
2011 - 17	1.6%	596bp

Benchmark Return on Equity and Excess Returns

• Gov't guarantees important for profitability and market valuation

• Value of gov't guarantees highly sensitive to risk taking

• Concerns about future deregulation and bank recovery

Future Work

• Extend analysis to European banks

• Investigate the cross-section

Spreads on Subordinated Debt

Return on Equity for FDIC-Insured Banks

back

Book and Fair Values

