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Abstract

This paper provides a general model to assess the stability of stablecoins, cryp-

tocurrencies pegged to a traditional currency. We study the problem of a mo-

nopolist platform that can earn seigniorage revenues from issuing stablecoins. We

characterize stablecoin issuance-redemption and pegging dynamics under various

degrees of commitment to policies. Even under full commitment, the stablecoin

peg is vulnerable to large demand shocks. Backing stablecoins with collateral helps

to stabilize the platform but does not provide commitment. Decentralization of

issuance, combined with collateral, can act as a substitute for commitment.
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1 Introduction

A stablecoin is a cryptocurrency designed to maintain a peg with an official currency.

Stablecoins can purportedly cater to investors’ demand for alternative means of payment

by combining the benefits of blockchain technology with the stability of traditional curren-

cies. These cryptocurrencies have recently gained in popularity, with the market value of

stablecoins growing from $3 billion in 2019 to $130 billion in June 2023 (CoinMarketCap,

2023). Confronted with this rapid development, along with multiple depegging events

and crashes,1 policymakers have started to introduce initiatives to regulate stablecoins.2

We propose a model to study the stability of various stablecoin protocols and the

optimal design of stablecoins. In our model, a monopolistic stablecoin platform faces a

demand for money-like assets. Like any money issuer, the platform has strong ex post

incentives to overissue and devaluate stablecoins, which limits its ability to maintain

the peg. A stablecoin issuer, however, can rely on new tools, such as smart contracts

and decentralization, to potentially address this time-consistency problem inherent to

monetary institutions. Our model encompasses an array of protocol designs that have

emerged in practice, such as algorithmic supply adjustments, collateralization, and the

decentralization of the issuance process.3 Our main result is that the delegation of

issuance to users can substitute for commitment when smart contracts are imperfect.

In our dynamic model, a monopolist platform caters to a time-varying demand for

stablecoins, which depends on the platform’s ability to maintain the peg. A sufficient

statistic for demand is the marginal utility flow of users from holding stablecoins. This

liquidity benefit varies with an exogenous demand shock and with the total stock of

stablecoins, which may reflect network effects or demand satiation. To reflect a preference

for stable money-like assets, we assume that users enjoy these liquidity benefits only if

the stablecoin price is pegged to the unit of account. This liquidity premium proxies for

various benefits users can enjoy in practice; for instance, they may use stablecoins as a

means of payment on the blockchain, a safe and tax-efficient “parking space” for crypto

volatility, or as a cheap vehicle for international remittances.4

The monopolistic platform chooses its policy to extract seigniorage revenues from these

1For example, the collapse of the Terra-Luna platform in May 2022.
2The US Congress introduced the Stablecoin Tethering and Bank Licensing Enforcement (STABLE)

Act; the EU introduced the Markets in Crypto Assets (MiCA) Regulations; and the UK Treasury has
launched a “UK regulatory approach to cryptoassets and stablecoins: Consultation and call for evidence.”

3Examples include Terra and Nubits for algorithmic stablecoins; FRAX, USDT, UDC, and DAI for
collateralized stablecoins; and DAI for decentralized stablecoins.

4See European Central Bank (2021); Federal Deposit Insurance Corporation and Office of the
Comptroller of the Currency (2021); and Gorton, Klee, Ross, Ross, and Vardoulakis (2022a).
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liquidity benefits, taking into account how its decisions affect stablecoin demand and

pricing. At any point in time, the platform can adjust its issuance-repurchase policy

for stablecoins—similar to a central bank’s open market operations—and its interest-

rate policy paid in stablecoins to users, similar to interest on reserves. The platform

may also collateralize stablecoin issuance with a safe asset. In this case, the platform

must hold as collateral a fraction of the par value of outstanding stablecoins. To finance

these policies, the platform can freely issue equity (tokens) that represents claims to the

platform’s future seigniorage revenues. On the demand side, users price the stablecoin

competitively, based on their expectations of future platform policies.

As a benchmark, we first study a stablecoin platform that can fully commit to all of its

policies thanks to immutable smart contracts. Even in this case, an uncollateralized (also

called “algorithmic”) stablecoin admits an equilibrium in which its price is zero. This

classic monetarist result arises because no anchor ties the stablecoin to the unit of account,

as both liquidity benefits and interest payments depend on the value of stablecoins. In

this full-commitment benchmark, a second equilibrium exists in which the peg is robust to

small negative demand shocks. In this equilibrium, the platform mints stablecoins when

demand increases and issues equity tokens to buy back stablecoins when demand drops.5

These policies correspond to the adjustment mechanisms of the Terra-Luna algorithmic

protocol in practice. Finally, via its interest-rate policy, the platform can simultaneously

maintain the peg and implement the supply that maximizes seigniorage revenues. Doing

so, it implements a profit-maximizing version of the Friedman (1960) rule.

Although uncollateralized platforms can defend the peg against small negative demand

shocks, they are vulnerable to large demand drops. After such shocks, the present value

of seigniorage revenues may fall short of the cost of repurchasing stablecoins to maintain

the peg. In this case, the platform’s equity holders are neither willing to inject cash nor

able to issue new equity tokens to finance the desired stablecoin buyback. As a result, the

stablecoin loses its peg, and the value of equity tokens drops to zero. The prediction that

equity tokens trade at zero when the stablecoin depegs is consistent with the collapse of

Terra-Luna in 2022.6 Overall, we stress that programming monetary policy via smart

contracts does not allow the platform to avoid the consequences of limited liability.

Our analysis under full commitment further highlights the role of collateral for stability.

5This ability of stablecoin platforms to issue equity shares or “tokens” at no substantial cost is key
to allowing pure algorithmic stablecoins to perform the equivalent of open market operations without
holding any tangible assets on their balance sheets.

6Following a depegging event, the protocol reacted by minting increasing quantities of Luna equity
tokens to burn/buy back Terra stablecoins. In Appendix A, we provide a descriptive analysis of the May
2022 stress for the five largest stablecoin platforms. See also Liu, Makarov, and Schoar (2023) for a more
detailed account of the Terra-Luna downfall.
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Repurchasing stablecoins frees up collateral held against these stablecoins. Hence, col-

lateralization reduces the amount of equity tokens the platform must issue to finance

stablecoin buybacks, thereby relaxing its limited liability constraint. In our model,

holding collateral is costly, which induces a trade-off between the collateral cost and

the stability it confers to the stablecoin. Specifically, for a fully collateralized stablecoin

to be profitable, the liquidity benefits the platform captures must exceed the collateral

holding cost. The existence condition for uncollateralized stablecoins emphasizes instead

the need for demand growth, as the growth rate of issuance must exceed the interest

payments to users necessary to maintain the peg.

In the second part of our paper, we analyze the stability of a stablecoin platform under

a weaker form of commitment. In practice, not all contingencies can be programmed via

smart contracts, and the platform has discretion over many policies.7 We thus relax our

assumption that all policies are programmed via smart contracts. While the platform

can still commit to a collateral and interest-rate policy, it now chooses its issuance-

repurchase policy sequentially. The platform then suffers from a durable-good monopolist

problem (Coase, 1972). Issuance of new stablecoins affects the liquidity benefit enjoyed

by past stablecoin buyers because these benefits depend on the total stock of outstanding

stablecoins. Hence, new issuance dilutes legacy stablecoins, which the platform considers

as a sunk cost when it lacks commitment. The platform’s time-consistency problem

evokes central banks’ incentives to inflate away the stock of money, which is a government

liability (Kydland and Prescott, 1977; Persson, Persson, and Svensson, 1987).

The time-consistency problem is so severe in our model that the stablecoin platform

fails to earn any seigniorage revenues when it lacks commitment. This result is related

to the leverage ratchet effect in trade-off models of debt. DeMarzo and He (2021) show

that without commitment, a firm cannot capture any tax benefit of debt due to ex post

incentives to overissue. In our model, stablecoins represent the platform’s debt, and

liquidity benefits correspond to the tax advantage of debt for a firm. A key difference,

however, is that collateralization does not restore commitment in our model. In the

trade-off model, fully securing debt prevents equity holders from diluting legacy debt

via an increase in the likelihood of default. In our model, dilution operates instead

via the liquidity benefit that depends on the total stablecoin stock, so collateralization

does not neutralize dilution incentives and thus cannot restore commitment. Any policy

aiming to restore commitment should instead neutralize the platform’s price impact on

7In our model, the smart contract requires the exogenous demand shock as an input. In cryptocurrency
jargon, such information qualifies as “off-chain” because it is not generated by the blockchain on which the
stablecoin protocol runs. Incorporating off-chain information via “oracles” comes with implementation
costs and vulnerabilities relative to on-chain information. See Czsun (2023) for details.
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the stablecoin. We show how a programmable interest-rate rule can achieve this objective.

Finally, we consider the decentralization of issuance as a potential solution to the

time-consistency problem of the platform. With DAI, for instance, anyone can mint

stablecoins freely. So-called vault owners issue stablecoins by locking the required fraction

of collateral in their vault. The platform charges these vault owners a seigniorage fee

proportional to their outstanding stablecoin balance. We incorporate these elements in

our framework and show that decentralization of issuance affects the platform’s problem

in two key ways. First, competitive vault owners arbitrage away price deviations from the

peg. Second, the platform earns a rental-based income on the total stock of stablecoins

rather than an issuance-based income on new stablecoins. Under full collateralization,

these two features restore time consistency: the platform then sets fees charged to vault

owners and interest rates paid to users that implement the full-commitment solution.

The fact that a rental-based income for the platform restores commitment highlights the

connection between our result and the leasing solution to the Coase (1972) problem.

Our main finding is that decentralization of issuance by the stablecoin platform can

restore commitment. While we study optimal stablecoin design, this insight can apply

more broadly to any intermediary with market power and money-like liabilities.

Related literature. Our paper contributes to an emerging literature on stablecoins.

Several works have studied stablecoin protocols and their pegging mechanisms empirically

(Arner, Auer, and Frost, 2020; Berentsen and Schär, 2019; Bullmann, Klemm, and Pinna,

2019; ECB, 2019; Eichengreen, 2019; G30, 2020; Ho, Darbha, Gorelkina, and Garcia,

2022). Gorton, Ross, and Ross (2022b) estimate the convenience yield on stablecoins

and argue that further technological advances and reputation formation are required

to make stablecoins money-like. Liu, Makarov, and Schoar (2023) study the crash

of the Terra-Luna algorithmic stablecoin and attribute it to growing concerns about

sustainability rather than manipulation. Kereiakes, Kwon, DiMaggio, and Platias (2019)

and DiMaggio and Platias (2019) propose partial equilibrium models specific to the Terra-

Luna stablecoin. Like them, we find that a stablecoin peg may be robust to small shocks,

but we stress that uncollateralized stablecoins always risk losing their pegs after large

shocks. Uhlig (2022) proposes a model of exchange dynamics to study the crash of Terra-

Luna. As in our model, a positive probability of re-pegging prevents the price of the

stablecoin from instantaneously collapsing to zero. Our model encompasses several other

stablecoin designs that rely on collateralization and/or decentralization of issuance.

Closely related to our work, Li and Mayer (2022) propose a dynamic model of stablecoin

in which platforms devalue after a negative shock to their reserves in order to avoid costly
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liquidation. Their analysis is similar to the full-commitment case of our model. However,

we further show that the platform suffers from a time-consistency problem when managing

issuance, which jeopardizes the stablecoin peg. Jermann and Xiang (2022) also focus on

commitment issues attached to cryptocurrency issuance. We differ from their approach as

we incorporate users’ preference for a stable means of payment and study decentralization

of issuance as a way to restore commitment. Similar to Lyons and Viswanath-Natraj

(2020), we emphasize the role of arbitrage by vault owners for decentralized stablecoins’

stability, but we also stress the importance of seigniorage fees.

Several works highlight the similarities between stablecoin platforms and banks as

providers of means of payment. Routledge and Zetlin-Jones (2021) relate stablecoin

platforms to central banks under a fixed exchange rate regime (Krugman, 1991; Obstfeld,

1996). They show that policies akin to suspension of deposit convertibility (Diamond and

Dybvig, 1983) preempt self-fulfilling runs. Bertsch (2023) also studies stablecoin runs

and highlights the link between stablecoin adoption and fragility. Zhang, Ma, and Zeng

(2023) link stablecoins to ETFs and study the trade-off between stablecoin peg stability

and financial fragility. Despite some analogies between these approaches, stablecoins are

not redeemable in our model; instead, users may only convert stablecoins by selling them

at the market price. This modeling difference allows us to focus on the incentive problem

of the stablecoin issuer in a rich dynamic environment.

A recent literature on Central Bank Digital Currencies (CBDCs) has emerged (e.g.,

Ahnert, Hoffmann, and Monnet, 2022; Benigno, Schilling, and Uhlig, 2022; Brunnermeier,

James, and Landau, 2021; Fernandez-Villaverde, Sanches, Schilling, and Uhlig, 2021). As

electronic money issued by central banks, CBDCs can be seen as public stablecoins, while

our model studies private stablecoins issued by profit-maximizing institutions. Further-

more, to the best of our knowledge, decentralizing issuance to solve the commitment

problem has not been proposed in the context of CBDCs. Also related, a series of works

has investigated the pricing of nonstable cryptocurrencies and also highlighted the role

of transactional value in this respect (Biais, Bisière, Bouvard, Casamatta, and Menkveld,

2023; Garratt and Wallace, 2018; Schilling and Uhlig, 2019).

The time consistency problem we analyze affects monetary issuance beyond stablecoins.

Early works in monetary economics (Calvo, 1978; Kydland and Prescott, 1977; Persson,

Persson, and Svensson, 1987) show that a central bank has ex post incentives to engineer

surprise inflation to dilute the legacy stock of money, which represents nominal liabilities

of the government. In corporate finance, Admati, DeMarzo, Hellwig, and Pfleiderer (2018)

identify the leverage ratchet effect, building on Black and Scholes (1973) and Myers (1977).

Under discretion, a firm overissues debt relative to the commitment solution. These time-
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consistency problems can be traced back to Coase’s (1972) conjecture that a durable good

monopolist competes against its future self and does not capture any markup. In financial

applications, the durable good is an issuer’s liability that commands a tax advantage

or a convenience yield. We show that delegating issuance to competitive agents can

solve the platform’s time-consistency problem, and we highlight the connection between

decentralization and the leasing solution to Coase’s problem.8

Finally, recent works have discussed the implications of crypto innovations in contexts

where the Coase conjecture applies. Goldstein, Gupta, and Sverchkov (2022) show that

issuing utility tokens dilutes the market power of a monopolist platform by transforming

a flow of services into a durable good. Similarly, in the model developed by Cong, Li, and

Wang (2020a), blockchain technology mitigates underinvestment by addressing a time

consistency problem.9 Brzustowski, Georgiadis-Harris, and Szentes (2023) show that

“smart” contracts whereby a mediator imperfectly transmits information to the durable

good seller can solve Coase’s problem. Their focus on smart contracts as communication

devices differs from ours: We instead view smart contracts as a set of immutable rules.

2 General Environment

This section lays out our model of stablecoins. Section 2.1 describes stablecoin demand

from users who enjoy money-in-the-utility benefits from holding stablecoins. Section 2.2

and Section 2.3 present the tools available to a monopolistic platform that caters to such

demand and its optimization problem, respectively. Finally, Section 2.4 discusses the

mapping between our model and stablecoin designs in practice.

2.1 Stablecoin Demand

Time is continuous with t ∈ [0,∞). Let (Ω,F ,P) be a probability space that satisfies

the usual conditions. There is a monopolistic stablecoin platform and a unit mass of

homogeneous users. All agents consume a numeraire good—the unit of account—and

discount the future at a rate of r. A stablecoin is an infinite-maturity asset issued by the

platform, in supply Ct, that pays an interest rate δt to users at date t in stablecoins.

Stablecoin users enjoy direct utility from holding stablecoins and can trade those at

8In a trade-off model of debt, Hu, Veras, and Ying (2022) point out that rolling over short-term debt
solves the commitment problem. In practice, however, stablecoins are long-lived assets, so we do not
consider instantaneous maturity as a design choice.

9Other works that study token adoption and valuation include Cong, Li, and Wang (2020b); Hinzen,
John, and Saleh (2022).
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price pt. A user with ct stablecoins chooses his path of consumption {xs}s≥t of the

numeraire good and stablecoin holdings {cs}s≥t to solve

max
{xs,cs}s≥t

Et
[∫ ∞

t

e−r(s−t)
{
xs + u(As, pscs)

}
ds

]
, (1)

subject to xs + psċs = es + δspscs, (2)

where u(As, pscs) is users’ utility for real balances of stablecoins, pscs. This money-

in-the-utility specification captures in reduced form the use of stablecoins as a store of

value or as means of payment. Variable As is an exogenous demand shock for which we

provide dynamics below. In budget constraint (2), es represents a user’s endowment of

the numeraire good at date s. Users also receive δs stablecoins as interest payment for

each stablecoin held, which corresponds to the second term on the right-hand side of (2).

We derive the stablecoin demand equation by solving users’ problem (1). User opti-

mization over consumption and stablecoin holdings implies the following Euler equation:

rpt = δpt + ptuc(At, ptct) + Et
[
dpt
dt

]
. (3)

Users require a return r, equal to their discount rate, to hold stablecoins. The right-hand

side of (3) features all three sources of return from holding stablecoins: interest payment

δt, marginal utility for real balances uc(At, ptct), and expected relative price appreciation

of the asset, 1
pt
Et
[
dpt
dt

]
. The entire unit mass of homogeneous users chooses the same

holdings, ct, equal to total supply Ct by market clearing. By setting ct = Ct in equation

(3), we obtain the dynamic demand equation for stablecoins:

rpt = δpt + ptuc(At, ptCt) + Et
[
dpt
dt

]
. (4)

We refer to (4) as the dynamic demand equation for stablecoins, because it maps the

(real) stablecoin supply ptCt to the stablecoin price dynamics.

Equation (4) highlights users’ liquidity benefit `t := uc(At, ptCt) as a sufficient statistic

for stablecoin demand. This liquidity benefit is akin to a convenience yield, which captures

indirect returns from holding an asset.10 From here onward, we treat the liquidity benefit

10We rely on an ad hoc demand for stablecoins via money-in-the-utility function for simplicity, but a
similar liquidity benefit emerges from microfounded theories of money demand. For instance, the new
monetarist model of Choi and Rocheteau (2020) yields a similar dynamic demand equation as equation
(4). In their version—without interest payment or demand shock—the liquidity benefit is given by
`t = α(v′(ptCt)− 1) when the bargaining power is given to sellers. In this formulation, the parameter α
measures the frequency of decentralized meetings when coins are used, and v corresponds to the utility
of buyers from consuming decentralized goods.
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as a primitive and impose the following assumptions:

Assumption 1. The liquidity benefit for stablecoins `(A, pC) is

(i) continuously differentiable in both arguments;

(ii) homogeneous of degree 0;

(iii) such that `(A, x)x has a unique interior maximum with maxx `(A, x)x > 0;

(iv) equal to 0 if p 6= 1.

To obtain Property (i), one needs only differentiability of the money-in-the-utility

function u. Property (ii) is a technical assumption made to economize on one state

variable. Consequently, we can define the liquidity benefit function as a function of the

ratio a = A/C: `(a) ≡ `(A/C, 1) = `(A,C). As we will show, Property (iii) implies that

the platform’s problem is well behaved because `(A, pC)pC is a measure of seigniorage

revenue flows for the platform. To satisfy this property, the liquidity benefit `(A, pC)

must decrease for large values of pC at a faster rate than pC or become negative.11

Finally, Property (iv) captures users’ preference for stable stablecoins. For simplicity, we

assume that the liquidity benefit vanishes if the current price deviates from a reference peg

price. This feature implies that the platform must defend the peg to capture seigniorage

revenues. The peg is set to one without loss of generality to reflect market practice.12.

Stablecoin demand is subject to exogenous shocks through the demand index At, which

follows the law of motion:

dAt = µAtdt+ σAtdZt + At-(St − 1)dNt, (5)

where dZt is the increment of a standard Brownian motion and dNt is a Poisson process

with constant intensity λ > 0 adapted to F . The size of a downward jump, − ln(S),

is exponentially distributed with parameter ξ > 0 and the expected jump size is E[S −
1] = −1/(ξ + 1). The expected growth rate of stablecoin demand is thus given by

µ− λ/(ξ + 1) < r. The Poisson process generates large negative shocks to stablecoin

demand. We denote At- (resp. At) for the value of the demand shock just before (after)

11That the liquidity benefit `(A, pC) should be decreasing in pC follows naturally from its definition
as a marginal utility. Given that we consider `t to be a primitive, however, we do not impose that
the liquidity benefit decreases with pC everywhere. For low values of pC, network effects in stablecoin
adoption could increase the marginal utility for stablecoins as the supply increases.

12Without this “extreme-peg” assumption, a stablecoin could have value, even though there is no
active management of the supply of stablecoins to stabilize its price (as for standard cryptocurrencies).
For example, this preference for stable means of transaction could arise in models in which they benefit
from being information insensitive (Dang, Gorton, and Holmstrom, 2019).
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the jump. We will use similar notations for policy variables chosen by the platform.13

The demand shock At could represent the exogenous price process for non-stablecoin

cryptocurrencies such as Bitcoin. Given that investors use stablecoin as a store of value

in the crypto world, the value of volatile cryptocurrencies could drive stablecoin demand.

2.2 Platform Policies

In this section, we describe the policy decisions of the stablecoin platform. In practice,

platforms either directly control the issuance of stablecoins (e.g., USDT, USDC) or

decentralize the issuance process (e.g., DAI). For clarity, we postpone the description

of a decentralized issuance protocol to Section 5.

A centralized platform chooses the stablecoin supply Ct and the interest rate δt paid to

users. Moreover, the platform may collateralize the issuance of stablecoins. The collateral

asset is safe and delivers a rate of return µk < r.14 The difference r−µk can be interpreted

as an unmodeled convenience yield that is lost to the platform when encumbering the

asset as collateral. This assumption generates a collateral holding cost.15 Finally, the

platform can enter liquidation and distribute the collateral uniformly between users.

Definition 1 (Centralized Platform Policies). The platform chooses a collateral

ratio ϕ ∈ [0, 1] such that ϕ worth of collateral backs each stablecoin; a sequence of

stablecoin issuance and repurchase {dGt}t≥0; interest rates {δt}t≥0 paid in stablecoins;

and a stochastic liquidation time τ , at which the platform shuts down and distributes

collateral to users uniformly.

The platform controls supply via issuance to increase the stock of stablecoins or repur-

chases to retire them. Hence, the process {dGt}t≥0 can take both positive and negative

values. The stablecoin interest policy, whereby every user receives δt ≥ 0 extra stablecoins

per stablecoin owned, is similar to interest payment on reserves by a central bank. These

two policies combined imply the following law of motion for the stablecoin supply Ct:

dCt = dGt + δtCtdt. (6)

Both the active issuance dGt and interest payments δtCtdt contribute to supply changes.

13For a variable X, Xt- denotes the left limit Xt- = limh→0Xt−h.
14Our assumption of a safe collateral asset comes with some loss of generality because some stablecoin

platforms are often backed by risky cryptoassets. In this case, the collateral price would likely be
correlated with the demand process At. It is intuitive, however, that such a correlation would reduce
the usefulness of collateral as a hedge against demand fluctuations.

15Because it pays a return µk strictly lower than their discount rate, users consider collateral to be a
dominated asset. Hence, their optimization problem (1) is unaffected by the availability of this asset.
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The platform can hold collateral, which plays a role similar to central banks’ reserves.

To reflect stablecoin designs in practice, we assume that the platform must maintain a

constant ratio ϕ between the value of its collateral holdings and the stock of stablecoins.

This feature simplifies our analysis because the platform’s collateral holding policy mimics

its supply policy. The uncollateralized case, ϕ = 0 corresponds to a “pure algorithmic

stablecoin” such as Terra, whereas the fully collateralized case, ϕ = 1 is sometimes

referred to as a “narrow stablecoin” in reference to narrow banks (e.g. USDT, USDC).

Our specification also encompasses partially collateralized designs such as FRAX.16

Finally, the platform can shut down, which transfers the collateral value ϕ backing each

stablecoin to stablecoin users. We refer to this event as the liquidation of the platform.

2.3 The Platform’s Problem

We solve for the policy sequence that maximizes the platform’s date-0 value. As for any

sequential plan, the platform’s ability to implement ex post the optimal date-0 policy

depends on its ability to commit. A central technological proposition of stablecoins is that

rules can be programmed in advance via algorithms—i.e., so-called smart contracts. We

thus first characterize the platform’s problem under full commitment to policies chosen

at date 0 and defer the analysis of commitment problems to Section 4.

Problem 1 (Full Commitment Problem). Under full commitment, the stablecoin

platform maximizes its date-0 value

E0 := max
ϕ,τ,{δt,dGt}t≥0

E0

[ ∫ τ

0

e−rt
(
ptdGt + ϕµkCtdt− ϕdCt

)∣∣∣∣A0, C0- = 0

]
, (7)

subject to the law of motion (6), stablecoin pricing equation (4) with pτ = ϕ, and

∀t, lim
T→∞

Et[e−rTpTCT ] = 0, (8)

∀t, Et := Et
[ ∫ τ

t

e−r(s−t)
(
psdGs + ϕµkCsds− ϕdCs

)∣∣∣∣At, Ct-] ≥ 0, (9)

the No-Ponzi-Game condition and limited liability constraint, respectively.

The platform maximizes the present value of its profit flow, which is equal to issuance

gains ptdGt and the return on collateral µkϕCtdt less new collateral purchase costs ϕdCt.

16While some stablecoins collateralized by risky assets feature overcollateralization in practice (ϕ > 1),
this would be suboptimal in our model because the platform uses a safe and liquid asset as collateral.
Also, note that ϕ = 1 corresponds to full collateralization in our model because the implicit peg price is
set at 1. If it were set at p̄, full collateralization would mean ϕ = p̄.
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By definition, increasing (decreasing) the stablecoin supply by one unit requires (frees

up) ϕ worth of collateral, which explains the last term of the profit flow in (7).

As a monopolist, the platform internalizes the pricing effect of supplying stablecoins.

Hence, it treats the demand equation (4) as an optimization constraint. Furthermore, at

liquidation date τ (if any), the stablecoin price must be equal to collateral ratio ϕ. Next,

condition (8) follows from the transversality condition in users’ optimization problem.17

This constraint rules out bubbles in which the stablecoin (real) supply would grow at the

discount rate of r. The No-Ponzi-Game condition (8) implies that the value of stablecoins

must hinge on the creation of liquidity benefits for users and cannot be a pure bubble.

The platform is also subject to a limited liability constraint, given by equation (9).

At any date t, the present value of expected profit flows (the platform equity) must

be positive given current demand At and cumulative supply up to date t, Ct- . When a

policy generates a negative cash flow—for instance, to repurchase stablecoins (dGt < 0)—

constraint (9) ensures that equity holders of the platform are willing to inject cash or

able to issue equity against future profits to meet this outflow.

Equilibrium Selection In our model, there exists an equilibrium in which the stable-

coin price does not exceed the collateralization ratio ϕ. In particular, an uncollateralized

stablecoin (ϕ = 0) may trade at a zero price, similar to fiat money. Without collateral,

there exists no anchor between the stablecoin and the unit of account, since dividends

are paid in stablecoins. As a result, the zero-price equilibrium is self-fulfilling, as can be

seen from the pricing equation (4). For any collateralization ratio ϕ < 1, the platform

has no value in this equilibrium because it captures liquidity benefits only when the price

is pegged to one. In what follows, we abstract from equilibrium multiplicity and study

instead whether the platform can sustain another equilibrium with a positive value.18

17This condition states that a stablecoin holding plan is admissible if, for all t,

lim
T→∞

e−r(T−t)Et[pT cT ] = 0,

where ct is a (representative) user holdings of stablecoins at date t. Condition (8) thus follows from the
above equation and market clearing, Ct = ct.

18Equilibrium multiplicity with fiat money has been thoroughly studied by the new monetarist
literature (Williamson and Wright, 2011). We note that with full collateralization—a central part of
our analysis—a platform could eliminate this equilibrium by offering 1:1 redemption rights to users. See
also our discussion on this point in Section 3.3.
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2.4 Mapping to Stablecoins in Practice

Redemption Rights In our model, users cannot directly redeem stablecoins with the

platform. Instead, they must trade in the market to convert their stablecoins back to

the unit of account. Since the monopolistic platform controls the market price, however,

it implicitly sets the conversion rate for users. We later discuss the link between our

supply-based model and redeemable stablecoins in Section 3.3 and footnote 32.

In practice, the largest stablecoin issuers (e.g., Tether and Circle) grant redemption

rights to a restricted set of authorized participants in order to manage changes in demand,

similar to exchange-traded funds. Zhang, Ma, and Zeng (2023) document frictions in this

redemption process. Besides, most users can only exchange stablecoins in a secondary

market. Griffin and Shams (2020) document outright stablecoin issuance from the Tether

platform, similar to the open market operations of our model.

Interest Rates The platform pays an interest rate to stablecoin users, similar to a

central bank’s interest on reserves. In practice, Terra paid an interest rate of 20% before

it collapsed; DAI’s interest rate fluctuates between 1% and 7%. However, several large

stablecoins, such as USDT or USDC, do not pay interest. This restriction constrains the

platform’s choices in our model, but our main insights remain (see later Remark 1).19

Equity Tokens Our model implicitly allows for the costless issuance of equity to

finance stablecoin repurchases.20 Whereas equity issuance costs may be significant for

traditional firms, stablecoin platforms can easily issue blockchain-based equity tokens—

also often referred to as “governance” tokens. In practice, this technological innovation

has been instrumental in the emergence of fully uncollateralized—so-called algorithmic

stablecoins—whereby stablecoin repurchases can be financed instantaneously with equity

tokens issuance. Moreover, equity tokens are often touted as a way to foster diversity

in ownership. In our model, however, ownership is irrelevant because all equity holders

share the same profit-maximizing objective. Hence, we only need to keep track of the

total value of equity, and governance decisions are taken by a representative equity holder.

Platform Competition Our model features a single stablecoin platform. In practice,

several stablecoin platforms compete to cater to users’ demand for alternative means

19It is often claimed that some stablecoins do not pay interest to avoid the regulatory burden of
qualification as securities by the US Securities and Exchange Commission.

20Fully collateralized stablecoins (ϕ = 1) need not issue equity because repurchases can be financed
entirely out of collateral holdings.
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of payment. If multiple platforms coexisted, the liquidity benefit in our model would

represent investors’ residual demand for one platform’s stablecoins after accounting for

supply from other platforms. What matters is that the platform benefits from some

market power that could arise, for example, because of payment network effects, as in

Cong, Li, and Wang (2020a).

3 Full Commitment

In this section, we characterize optimal policies under full commitment—an environment

with complete and immutable smart contracts that govern all policies in all contingencies.

This benchmark provides a minimal set of necessary conditions for a stablecoin platform

to have value and to be able to maintain parity. Since limited liability plays an important

role in this analysis, we first consider a benchmark with unlimited liability in Section 3.1

and with limited liability in Section 3.2.

3.1 Unlimited Liability Benchmark

First, we assume that the platform is not bound by limited liability and ignore constraint

(9) from Problem 1; that is, the platform’s equity value may become negative. Equity

holders can thus commit at date 0 to meet any future outflow, even if it exceeds the

expected continuation profit from operating the platform. In this case, the platform

never liquidates—that is, τ =∞.21

To derive the platform’s optimal policies, rewrite the date-0 equity value of the platform

in (7) as follows:22

E0 = E

[∫ ∞
0

e−rt
(
`(At, Ct)Ct1{pt = 1}+ (µk − r)ϕCt

)
dt

∣∣∣∣∣A0, C0- = 0

]
, (10)

Equation (10) expresses the platform’s equity value at date 0 as the expected present

value of its profit flow. The first component of this flow is the seigniorage revenue, which

is equal to the stablecoin supply Ct multiplied by investors’ flow demand for stablecoins,

`(At, Ct). To obtain the profit flow, the collateral flow costs (r−µk)ϕ must be subtracted

21Unlimited liability means that equity holders have access to a large source of pledgeable income
generated outside the platform to meet outflows. To draw a parallel in a macroeconomic context, a
central bank with unconditional fiscal backing from the sovereign could also be considered as having
unlimited liability. (Reis, 2015)

22Detailed computations to obtain (10) from (7) are reported in the proof of Proposition 1 in Appendix
A.
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from the seigniorage revenues. As the collateral asset returns less than the discount rate

r, the platform faces an opportunity cost from holding collateral. Recall that users enjoy

liquidity benefits only if the price is pegged to 1 (Assumption 1). Hence, the platform

earns seigniorage revenues at date t only if the peg currently holds—that is, pt = 1. From

pricing equation (4), the peg holds if and only if

r = δt + `(At, Ct) (11)

The discussion above suggests that the platform should maximize its profit flow at any

date t while maintaining the peg via its interest rate policy. To formally characterize

optimal policies under commitment, we introduce the following definition.

Definition 2. Given collateralization ratio ϕ and demand shock At, the stablecoin supply

that maximizes the platform’s profit flow at date t in (10) is given by C?(At, ϕ) with

C?(A,ϕ) ≡ arg max
C

{
`(A,C)C − ϕ(µk − r)C

}
. (12)

We define a?(ϕ) ≡ At/C
?(At, ϕ) as the constant “demand ratio” at this optimal supply.

When the platform implements the profit-maximizing supply, Ct = C?(At, ϕ), the

demand ratio at = At/Ct is constant due to the homogeneity of liquidity benefit `

(Assumption 1). The following proposition describes the platform’s optimal policies.

Proposition 1 (Full Commitment with Unlimited Liability). The platform holds

no collateral, ϕ? = 0, sets supply to Ct = C?(At, 0) and pays interest rate δ? = r−`(a?(0))

to peg the stablecoin price to 1.

The platform chooses collateralization ratio ϕ and supply sequence {Ct}t≥0 that maxi-

mize its equity value at date 0, given by (10). Under unlimited liability, this problem boils

down to a static profit maximization at every date t since the platform faces no adjustment

cost. Given ϕ, the platform thus sets date-t supply Ct to C?(At, ϕ) as this maximizes

its profit flow. The platform sets ϕ∗ = 0 because there is no collateralization benefit

that could justify bearing the collateral cost under unlimited liability: The platform

can tap into unlimited resources outside the platform at no cost to meet outflows. The

platform’s optimal supply policy consists in maintaining a target demand ratio a?(0)

between demand for stablecoins At and its supply. To implement this target, the platform

issues (buys back) stablecoins when demand At increases (decreases), in line with the

stabilization mechanisms of algorithmic stablecoins in practice.

The argument above assumes that the platform can maintain the peg at all dates, as

otherwise, it captures no seigniorage revenues. Proposition 1 shows how the platform
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seigniorage

flow

C∗0
0 C

`(A,C)

(a) Monopolist Profit Maximization

C∗ C∗

A ↑

C∗

A ↓

0
0 C

`(A,C)

(b) Adjustments Following Demand Shocks

Figure 1: Demand for Stablecoins and Platform Profit Maximization. This figure displays
examples of liquidity benefits along with the associated maximized stablecoin supply C∗. The
functional form for the liquidity benefit is given by `(a) = exp(a/2(1− a/2)).

achieves this outcome by paying an interest rate δ? to stablecoin users to satisfy pricing

equation (4). The platform can maintain the peg if the sum of the interest it pays and the

equilibrium liquidity benefit `(a?(0)) matches the user’s discount rate r. This relationship

also highlights how the platform makes money from stablecoins: It pays on its liabilities

a lower rate than the economy’s discount rate—that is, δ? < r—because users value

stablecoins for liquidity benefits that are costless to the platform.

As shown in the proof of Proposition 1, the platform’s total value at date 0 with

unlimited liability is given by the net present value of seigniorage flows, that is,

E?
0 =

`(a∗(0))

r − µ+ λ
ξ+1

A0

a?(0)
, (13)

where the discount rate is adjusted for the growth rate of stablecoin demand µ−λ/(ξ+1).

Figure 1 illustrates the platform’s optimal supply decision and its adjustments to

demand shocks. In the unlimited liability benchmark, the platform maximizes the static

monopolist revenue at each point in time, which corresponds to the surface of the dotted

rectangle in Panel (a). Supply adjustments are depicted in Panel (b).

Remark 1. Some stablecoins (e.g., USDT, USDC) do not pay interest. Equation (11)

shows that with δt = 0, supply Ct is pinned down by r = `(At, Ct) for any date t, provided

a solution exists. Hence, the platform cannot earn the monopolistic profit if it misses an

interest rate policy as part of its toolkit and therefore relies on quantities alone to target

the peg. Our analysis below would be otherwise unchanged.

Remark 2. The policy in Proposition 1 remains optimal without Property iv from As-

sumption 1, which states that users enjoy liquidity benefit only when the peg holds. In

that case, only the real supply—rather than the nominal quantity—of stablecoin matters.

Thus, the platform chooses the real supply to satisfy ptCt = C?(At, 0), but the price level

16



pt is undetermined. Equation (11) becomes

r = δ + `(A,C?(A, 0)) + π, (14)

with π the deflation rate—the growth rate of the stablecoin price. Equation (14) then

shows that deflation and interest payments are substitutable tools to sustain the optimal

policy. This observation echoes a familiar result regarding the dual implementation of the

Friedman rule in monetary economics. Unlike a benevolent government, however, our

issuer maximizes profit and does not seek to equate the marginal benefit from money, `t,

with its marginal cost of zero.

3.2 Limited Liability

We now consider Problem 1 in full, including limited liability constraint (9). The plat-

form’s equity value can no longer become negative, that is, equity holders’ contribution

to buy back stablecoins cannot exceed the present discounted value of future profits.

As a first step, we derive the platform’s equity value at any date t > 0 for a general

policy, following the same steps as when we derived equation (10). We obtain

Et = E

[∫ τ

t

e−r(s−t)
(
`(As, Cs)Cs1{pt = 1}+ (µk − r)ϕCs

)
ds

∣∣∣∣∣At, Ct- = 0

]
− (pt − ϕ)Ct- .

(15)

The first term of (15) is the present discounted value of seigniorage revenues net of

collateral costs. It represents the platform’s total value at date t, similar to equation

(10) for the date-0 equity value. At date t, however, the platform has Ct- stablecoins

outstanding. The second term, (pt − ϕ)Ct- , that enters Et negatively, represents the net

value of the platform’s debt equal to the market value of stablecoins outstanding ptCt-

minus the collateral backing, ϕCt- . Figure 2 provides a balance-sheet representation of

equation (15), where the present discounted value of seigniorage revenues is represented

as an (intangible) asset.

To see why the unlimited liability policy from Proposition 1 may lead to a negative

equity value, compute (15) when the platform applies this policy to obtain23

Et =
`(a?(ϕ))− (r − µk)ϕ

r − µ+ λ
ξ+1

At
a?(ϕ)

− (pt − ϕ)Ct- . (16)

23Steps for the derivation are in the proof of Proposition 1
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Figure 2: Balance Sheet of a Stablecoin Platform

For any outstanding stock of stablecoins Ct- there exists a low enough demand shock At

such that Et ≥ 0 cannot hold at the peg pt = 1 unless ϕ = 1. Intuitively, if demand At

jumps to a very low value, the total platform’s value—the first term of (16)—falls below

the net value of outstanding debt, (1− ϕ)Ct- , and equity value becomes negative.

Lemma 1. The full-commitment policy from Proposition 1 violates limited liability con-

straint (9) if and only if ϕ < 1. A fully collateralized stablecoin platform (ϕ = 1) is

profitable if and only if `(a?(1)) ≥ r − µk.

The first result follows from the discussion above. For any level of collateralization

ϕ < 1, the unlimited liability policy cannot be implemented. For fully collateralized (or

narrow) stablecoins, however, limited liability is inconsequential. As stablecoin repur-

chases can then be fully financed by selling the platform’s collateral, equity holders never

need to inject cash. The second part of Lemma 1 follows from inspection of equation

(16). A narrow stablecoin platform makes a profit if the liquidity benefit it captures from

users, `(a?(1)), exceeds the collateral holding cost r − µk. If this spread measures the

collateral’s own convenience yield, this condition implies that the stablecoin convenience

yield must exceed that of the collateral at the equilibrium demand ratio.

Next, we analyze optimal policies and price dynamics for partially collateralized sta-

blecoins. To do so, we consider a simplified version of Problem 1 by restricting the set of

feasible policies. We first define this set and then explain the restriction. These policies

are functions of state variable at ≡ At/Ct- , called the demand ratio—the ratio of the

current demand At to the outstanding stock of stablecoins Ct- at date t.

Definition 3. A target Markov policy (TMP) is given by collateralization ratio ϕ; liq-

uidation threshold a; peg threshold ā; target ratio a?; interest rate policy δt = δ(at); and
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issuance policy

dGt =

g(at)Ct-dt if a ≤ at < a,

(at/a
? − 1)Ct- if at ≥ a,

. (17)

with a < a < a?. The issuance policy is said to be smooth over [a, a] (of order dt). The

policy supports a continuous stablecoin price function pt = p(at) with

p(a) =


ϕ if a ≤ a,

p(a) if a ∈ [a, a],

1 if a ≥ a

. (18)

The Markov label for TMPs refers to the fact that policies depend only on two state

variables: current demand shock At and outstanding stock of stablecoins Ct- . Further-

more, once the issuance policy in (17) is normalized by the outstanding stablecoin stock

Ct- , it depends only on the demand ratio at. Restricting policies to be functions of state

variables At and Ct- comes with some loss of generality. However, the general problem

is hard to solve because limited liability constraint (9) is a forward-looking constraint,

which depends on the entire future sequence of actions by the platform. While focusing

on TMPs only provides a partial solution to Problem 1, it greatly increases tractability

and still allows us to highlight the main effect of limited liability on platform stability.24

A TMP is characterized by three regions for the demand ratio a: a liquidation region

[0, a], a smooth-issuance region [a, a], and a peg region [a,∞]. In the peg region, the

platform implements a constant demand ratio a?, similar to the policy described in

Proposition 1.25 Unlike a strict target policy, however, a TMP allows the platform to

abandon the target to accommodate the limited liability constraint. In the smooth-

issuance region, the platform switches to a smooth-issuance policy and lets the price fall

below 1. This region would be reached from the target a? following a negative shock to

demand. If this shock brings the demand ratio below the liquidation threshold a, the

24The full solution to Problem 1 is not time consistent, which implies that optimal policies do not
solve a standard recursive program with At and Ct- as state variables. Marcet and Marimon (2019)
develop a method to analyze programs similar to Problem 1 with forward-looking constraints. They
show that recursive methods can still be used if one enriches the state space. Precisely, the recursive
formulation should feature co-state variables that sum Lagrange multipliers associated with past forward-
looking constraints. Note that the problem with unlimited liability is already time inconsistent, as we
will discuss later, but without the limited liability constraint, the solution proves easy to characterize
without such techniques (see Proposition 1).

25The optimal policy under unlimited liability from Proposition 1 is a TMP with a = a = 0. Note
that the notation a? refers to a generic target for a TMP, while a?(ϕ) refers to the mapping introduced
in Definition 2, which is also the target of the unlimited liability policy.
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platform liquidates; that is, it distributes collateral to stablecoin holders. Definition 3

also includes the price function given by equation (18). While the stablecoin price is

an equilibrium object, the monopolistic platform effectively sets the price subject to the

dynamic demand equation (4).

The remainder of this section characterizes the TMP that maximizes platform’s date-

0 value E0 under limited liability. To express E0, let E(A,C-) be the platform’s equity

value as a function of state variables A and C-. Guessing that E inherits the homogeneity

property with respect to C− from the TMP, we define e(a) ≡ E(a, 1), the equity value per

stablecoin outstanding. By definition of a TMP, at date 0, the platform issues C∗(A0) =

A0/a
? at price p(a?) = 1. Its date-0 value is thus

E0 = E(A0, 0) = E(A0, C
?(A0)) + (1− ϕ)C?(A0) = A0

e(a?) + 1− ϕ
a?

, (19)

with e(a?) the (endogenous) equity value at the target demand ratio.

To solve for the optimal TMP, we proceed in three steps. First, we characterize the

equity value at target e(a?). Second, we derive optimal issuance policy g in the smooth-

issuance region [a, a] and the interest rate policy for given TMP parameters {a, ā, a?} and

collateralization ratio ϕ. Finally, we derive the optimal TMP—that is, the value of these

parameters that maximize the date-0 value given in (19).

Step 1: Equity Value. To derive the platform’s value at date 0, we must characterize

the equity value dynamics over the state space for demand ratio a. In peg region [a,∞),

the issuance policy in (17) features a jump to target demand ratio a?. Hence, the equity

value prior to the jump equals the post-jump equity value at the target, E(A,C?(A)),

plus the issuance gains net of collateral costs:

E(A,C-) = E(A,C?(A)) + (1− ϕ)(C?(A)− C-). (20)

Normalized equity value e(a) = E(A,C-)/C- thus satisfies:

∀a ∈ [a, ā], e(a) = e(a?)
a

a?
+ (1− ϕ)

( a
a?
− 1
)
. (21)

In the smooth issuance region [a, a], the dynamic equation for the equity value is:

e(a) = (p(a)−ϕ)g(a)dt+µkϕdt−ϕδ(a)dt+(1−rdt)
{

(1−λdt)E[e(a+da)]+λdtE[e(Sa)]
}
,

(22)

with da the change in the demand ratio over a period dt and Sa the new value of the
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demand ratio if a jump occurs during aperiod dt. The platform’s profit flow during a

period dt consists of three terms. The first term, (p(a) − ϕ)g(a), corresponds to the

platform’s active issuance gains net of collateral purchases. The second term µkϕ is the

return on collateral. The third term, −ϕδ(a), reflects the collateral cost of the interest

rate policy: The interest rate payment increases the stablecoin supply which must be

matched by collateral. Equation (22) can be used also to derive the equity value at the

target e(a?) by setting a = a? and g = 0 (no issuance) in (22).

For a given TMP policy, equations (21) and (22) fully describe the dynamics of the

platform’s equity value together with boundary condition e(a) = 0, whereby the equity

value is zero when the platform liquidates.

Step 2: Optimal Issuance and Interest Rate. Lemma 2 characterizes the interest

rate policy and the issuance policy in an optimal TMP.

Lemma 2. In an optimal TMP, the interest rate in the peg region is

δ? = r − `(a?) + λ (1− E[p(Sa?)]) . (23)

In the smooth-issuance region [a, a], the platform’s equity value is zero, e(a) = 0. The

platform pays no interest (δ(a) = 0) and buys back stablecoins at rate

g(a) = − µkϕ

p(a)− ϕ. (24)

Similar to equation (11) with unlimited liability, equation (23) determines the interest

rate payment necessary to maintain the stablecoin price at 1 in the peg region. The new

last term on the right-hand side of (23) reflects the extra interest rate the platform must

pay to compensate users for the expected price devaluation. Indeed, any negative demand

shock driving the demand ratio below a induces a loss of the peg. Intuitively, this interest

rate premium is proportional to the probability λ of a negative jump in demand.26

Now, consider optimal policies in the smooth-issuance region [a, a]. The platform’s

value rests on its ability to capture investors’ liquidity benefits as seigniorage revenues.

Hence, it minimizes the time spent in region [a, a] where the peg is lost (p(a) < 1)

and investors enjoy no such benefit. To reach the peg region, the platform maximizes

stablecoin repurchases and pays no interest to decrease the supply of coins at the fastest

feasible rate. The platform must spend pt−ϕ to buy back one stablecoin as the operation

26High interest rates offered by the platform can indicate a larger probability of a price crash. Before
it collapsed, the Terra-Luna platform was offering interest rates above 20%.
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frees up ϕ worth of collateral. Hence, given that it earns collateral return µkϕ for each

stablecoin outstanding, equation (24) defines the maximum repurchase rate compatible

with limited liability.

Step 3: Optimal TMP. Lemma 2 characterizes a TMP for given values of the

threshold {a, a, a?} and collateralization ratio ϕ. To solve for the optimal TMP, we

must express the platform’s date-0 value, given in (19), as a function of {a, a, a?} and ϕ.

This requires solving for e(a?), the equity value following date-0 issuance.

As a first step, we derive the Hamilton-Jacobi-Bellman (HJB) equation for the equity

value at the target demand ratio from equation (22) (see derivations in Appendix A.5):

(r + λ− µ)e(a?) = µkϕ+ µ(1− ϕ)− δ(a?) + λE[e(Sa?)]. (25)

Equity holders receive interest on collateral µkϕ, issue new stablecoins and purchase

collateral at the (expected) rate µ for a gain 1−ϕ, and pay interest δ(a?). The expected

equity value following a negative jump in demand, E[e(Sa?)], can be expressed as a

function of e(a?) since e(a) = 0 for a ≤ a and e(a) is given by (21) for a ≥ a. The other

endogenous term on the right-hand side of (25) is δ(a?), which depends on expected price

devaluation λ(1 − E[p(Sa?]), as shown by (23). No closed-form solution exists for the

price over the smooth-issuance region [a, a] and thus for e(a?) unless ϕ = 0 or ϕ = 1.27

As we already characterized the fully-collateralized case (ϕ = 1) in Lemma 1, we focus

on the uncollateralized case (ϕ = 0) in the remainder of this section. While special from

a theoretical standpoint, this case corresponds, for instance, to the design of Terra-Luna,

an algorithmic stablecoin that notoriously crashed in May 2022. For completeness, we

report numerical results for partially collateralized stablecoins in Appendix B.

Considering now exclusively an uncollateralized stablecoin (ϕ = 0), we can solve for

the price function in the smooth-issuance region.

Lemma 3. In region [a, a], the equilibrium price for an uncollateralized stablecoin is

p(a) =
(a
a

)−γ
(26)

where γ < −1 is the unique negative root of the following characteristic equation:

r + λ = −µγ +
σ2

2
(1 + γ)γ +

λξ

ξ − γ . (27)

27The difficulty when ϕ ∈ (0, 1) is that the law of motion for demand ratio at depends nonlinearly on
the price via the optimal issuance policy (24). Hence, the HJB for the price is nonlinear.
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The key insight from Lemma 3 is that the stablecoin price remains strictly positive

when the peg is lost, although investors enjoy no liquidity benefit. The stablecoin value

is then driven entirely by the probability that demand ratio at eventually reaches the peg

threshold a following positive demand shocks. The speed of this process depends on the

value of the root γ. Combining equation (25) and Lemma 3, we may finally characterize

the optimal TMP choice for an uncollateralized stablecoin platform in Proposition 2.

Proposition 2 (Optimal Uncollateralized Stablecoin). The optimal stablecoin pol-

icy for an uncollateralized platform features no liquidation, a = 0. Optimal lower bound

a > 0 for the peg region and target ratio a? solve

e(a?) + 1

a?
= max

a,a?

 `(a?)/a?

r + λ
ξ+1
− µ+

(
λξ
ξ+1
− λξ

ξ−γ

) (
a?

a

)−(ξ+1)

 (28)

subject to e(a) =
[
e(a?) + 1

] a
a?
− 1 = 0. (29)

First, Proposition 2 shows that an uncollateralized platform never commits to liquidate

itself (a = 0). Liquidation can only increase its date-0 value via an ex-post transfer of

collateral to stablecoin users. No such transfer can take place without collateral, so the

platform always continues to operate. In the smooth-issuance region [0, a], the platform’s

equity value is e(a) = 0, which implies that the platform is indifferent ex post between

shutting down and continuing to operate. Staying in operation, however, maintains a

positive price for the stablecoin (Lemma 3). The platform ultimately captures this benefit

via a lower interest payment δ? in the peg region, and thus a higher value of e(a?).

The second key result from Lemma 3 is that the smooth-issuance region is nonempty

(a > 0). This means that an uncollateralized stablecoin will lose its peg after a large

enough negative demand shock. Even if it can fully commit to all policies, the platform

cannot escape limited liability. After a large negative demand shock, maintaining the

target proves too costly for equity holders to recapitalize relative to the platform’s future

expected profits. As a result, the peg is then lost. This result is reminiscent of Del Negro

and Sims (2015) and Reis (2015), who show that an insolvent central bank without fiscal

support cannot control inflation.

The platform’s optimization problem, in equation (28), then amounts to the optimal

choice of the lower bound of peg region a and target demand ratio a?. Given that e(a) = 0

for all a ≤ a and e(a) is linear and increasing for a ∈ [a,∞), the limited liability constraint

binds for all a if e(a) = 0, which is constraint (29). Similar to equation (13) with unlimited
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liability, equation (28) shows that the platform’s date-0 value is the present discounted

value of seigniorage revenues. As a key difference, however, the effective discount rate is

higher under limited liability to account for the risk that the platform loses the peg.

A direct corollary of Proposition 2 is that the optimal target demand ratio with limited

liability, denoted a?ll(0), is higher than the target with unlimited liability, a?(0): Reducing

stablecoin issuance from C?(A) to C?
ll(A) < C?(A) protects the platform against large

negative demand shocks. Next, we show in Corollary 1 an uncollateralized stablecoin

platform is not always profitable, even though the cost of minting stablecoins is zero.

Corollary 1. An uncollateralized platform exists only if

max
a
`(a) ≥ r − µ+

λ

ξ + 1
. (30)

Condition (30) is a sufficient condition for an uncollateralizated platform to exist.28

It states that the growth rate of stablecoin demand, µ − λ/(ξ + 1) must exceed the

interest paid by the platform, δ? ≥ r − `(a?) in equation (23). Paying interest to users

entails buying back stablecoins to maintain the demand ratio at the target. Hence, the

difference between the growth rate of demand and the interest rate is the net issuance rate

of stablecoins, which must be positive for equity tokens to have any value. Ultimately,

Corollary 1 shows that a platform must face a steady growth in stablecoin demand to

maintain the value of its equity tokens. In other words, an uncollateralized platform can

emerge only if stablecoin demand is expected to keep growing over time.

To illustrate our results, Figure 3 contrasts the solutions under limited and unlimited

liability for uncollateralized stablecoins. The left panel shows that limited liability

protects equity holders, since their equity value is always positive after large negative

shocks. From an ex ante perspective, however, the inability to conduct large repurchases

lowers the total platform value, as can be observed in the right-most panel. The center

panel shows the stablecoin price as a function of the demand ratio. With limited liability,

the stablecoin trades below par in the smooth-issuance region, that is, when a ≤ a.

Figure 3 also illustrates our model prediction that the platform’s equity value falls to

zero when the stablecoin depegs even if it maintains a positive price. This prediction

can rationalize the events observed during the crash of the two algorithmic stablecoins,

Terra and NuBits. Faced with a demand crisis, both platforms issued equity tokens at an

exponentially increasing rate to repurchase and reduce the supply of stablecoins. Once

the price of equity tokens reached zero, it was not possible to proceed to further buybacks,

28We derive the necessary and sufficient condition for existence in the proof, and report a more intuitive
sufficient condition in the main text.

24



0 0.5 1 1.5 2
-0.1

0

0.1

0.2

0.3

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

unlimited liability
limited liability

Figure 3: Full-commitment solution with limited liability without collateral (blue) and
unlimited liability without collateral (black). The set of parameters is given by r = 0.06,
µ = 0.05, σ = 0.1, `(a) = r exp(−1/a), ξ = 6, λ = 0.10. Asterisks represent target demand
ratio a? and circles indicate ā, the point at which e(a) reaches zero.

the supply of stablecoin plateaued, and the stablecoin lost its peg (see Appendix A).

3.3 Tradable vs. Redeemable Stablecoins

To conclude this section, we discuss the relationship between our supply-based model of

stablecoins and one in which stablecoins are redeemable. In our model, the monopolistic

platform controls the stablecoin supply and anticipates the effect of its issuance on the

stablecoin price. In a redemption-based model, the platform would instead satisfy users’

requests to convert stablecoins in the unit of account at an advertised conversion rate.

Despite these differences, one may interpret the market price in our model as the

conversion rate in the redemption-based model, since the monopolistic platform effectively

controls the former. To see this, consider a state at in the peg region [a,∞) of a TMP. In

the redemption-based model, the platform would offer conversion at rate et = 1. Then,

the following would be an equilibrium: users redeem or buy new stablecoins until the

secondary market price pt adjusts to 1, and the stablecoin stock adjusts to C?(At). Now,

consider a state at ≤ a for which the peg is lost in our model. The platform could achieve

the same outcome in the redemption-based model by lowering its conversion rate from

1 to et = p?(at), where p?(at) denotes the equilibrium price of our model. Overall, this

argument suggests that the equilibrium of our supply-based model could be implemented

as an equilibrium of the redemption-based model.

As an important difference, however, runs could arise in a redemption-based model

unless the platform is fully collateralized.29 Although our model does not capture the

strategic complementarities at play in bank runs, it still highlights the greater fragility

29See He and Xiong (2009) for a dynamic model of bank runs. As is well known, partial suspensions
of stablecoin convertibility could kill nonfundamental runs.
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of unbacked stablecoins. Moreover, in what follows, we focus on fully collateralized

stablecoins that would be immune to runs because the collateral is liquid in our model.

4 Non-programmable Issuance

So far, we have assumed that the platform could fully commit to its future policies. In

practice, many stablecoin protocols retain discretion over the repurchase and issuance of

stablecoins. In this section, we let the platform choose policies sequentially to analyze

optimal time-consistent policies.30

First, we present a heuristic argument to show that the full-commitment policy derived

in Section 3 may not be time consistent. For this argument, we consider a fully collateral-

ized platform (ϕ = 1) for two reasons. First, the commitment policy takes a simple form

in this case because limited liability has no bite. Second, it allows us to show that the

commitment problem arises even when stablecoin issuance is fully backed by collateral.

A fully collateralized platform that reoptimizes at date t chooses a policy sequence

{Cτ , δτ}τ≥t to maximize its equity value Et, given by (15), subject to the pricing equation

(4). To convey the intuition, we discretize the problem in this heuristic argument and

let ∆t be the time interval between two consecutive dates. Suppose that the plat-

form implements the commitment policy for all future dates, that is, (Ct+n∆t, δt+n∆t) =

(C?(At+n∆t), δ
?) for n ≥ 1.31 Abstracting from future terms s > t in (15), the stablecoin

supply Ct and interest rate δt that maximize the platform’s date-t equity value solve

max
δt,Ct

(
`(At, Ct)1{pt = 1} − (r − µk)

)
Ct∆t− (pt − 1)Ct−∆t (31)

subject to pt = `(At, Ct)1{pt = 1}∆t+ (1− r∆t)Et
[
(1 + δt∆t) pt+∆t︸ ︷︷ ︸

=1

]
, (32)

where the equality pt+∆t = 1 obtains if the platform implements the commitment policy

from date t+ ∆t onward. The first term in (31) corresponds to the liquidity benefit net

of collateral costs enjoyed by the platform for its date-t supply while the second term is

the market value of outstanding stablecoins net of the collateral value backing them.

Absent the second term in (31), the platform would choose (Ct, δt) = (C?(At), δ
?) as

in the commitment case. However, since it has price impact via its choice of (Ct, δt),

30Imposing time-consistency can only make the platform worse in our model because we allow
commitment policies to be fully contingent. Our analysis thus highlights the value of such commitment.
In practice, discretion may add value if some contingencies cannot be included in smart contracts.

31It can be shown that this is in fact optimal also from the point of view of date t. Hence, as done
here, we only need to analyze the deviation with respect to date-t variables.
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the platform is tempted to dilute previously issued stablecoins Ct- by lowering the price

pt, thereby increasing the second term in (31). Under commitment, the platform would

take into account the negative effect of dilution at date t on the price of stablecoins

issued at date t − ∆t. At date t, however, these past issuance costs are sunk. When it

lacks commitment, the platform thus finds optimal ex post to dilute previously issued

stablecoins. These dynamics are similar to a durable monopolist’s temptation to lower

its price over time, which erodes its market power (see Coase, 1972).32

In the rest of this section, we analyze the platform’s problem when it lacks commitment

and chooses its issuance policy sequentially. We maintain commitment, however, to the

collateralization ratio and to the interest rate policy. If it chooses collateralization ratio

ϕ at date 0, the platform cannot lower ϕ at any future date. Similarly, the platform can

program an interest rate policy at date 0 and cannot renege ex post.

Definition 4. A programmable interest rate rule is a mapping from the current state

variables (At, Ct-) to the interest rate δt = δ(at).

In line with our previous analysis, the interest rate may depend on the pre-issuance

stablecoin stock only via the demand ratio at. Maintaining commitment to the interest

policy and the collateralization ratio allows us to show that incentives to dilute stablecoin

holders via issuance are pervasive even when the platform can commit to other policies.

4.1 Equilibrium Concept under Partial Commitment

We consider Markov perfect equilibria (MPE), defined with respect to the state variables

of our economy (At, Ct-). In an MPE, the platform’s issuance policy and the stablecoin

pricing function can depend only on (At, Ct-), as opposed to the entire history of shocks.

Definition 5. Given a programmable interest rule δ(a) and a collateralization ratio

ϕ ∈ [0, 1], an MPE is given by an equity token value function E(A,C-); a stablecoin

pricing function p(A,C-); an issuance policy dG(A,C-); and a default policy τ(A,C-)

such that the issuance policy dG and default policy τ maximize the platform’s equity value

sequentially

E(A,C-) = max
τ,dG

E
[ ∫ τ

t

e−r(s−t)
(
psdGs + µkϕCs − ϕdCs

)∣∣∣∣∣At = A,Ct- = C

]
, (33)

32Our discussion shows that the platform cannot commit to maintaining the price of its stablecoins
after they are issued. The analogy with a redemption-based model discussed in Section 3.3 suggests that
the platform would renege on a commitment to maintain a 1:1 conversion rate. Hence, the commitment
problem applies independently of our modeling choice for a supply-based stablecoin platform.
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and the pricing function satisfies

p(A,C-) = E
[ ∫ τ

t

e−r(s−t)(`s + δs)psds+ e−r(τ−t)ϕ

∣∣∣∣At = A,Ct- = C

]
, (34)

where the expectation is under the evolution of C implied by the platform’s policies.

The platform’s objective is to maximize its equity value at date 0, which corresponds

to E(A, 0), similar to the commitment case analyzed in Section 3. Without commitment

to future policies, however, the platform’s policies must also be time consistent, that

is, policies must also be optimal at any future date. In an MPE, time only matters

via the value of state variables (At, Ct-). Hence, optimization condition (33) formalizes

the requirement that policies are sequentially optimal. The Markov property for policies,

however, does not further constrain the optimization problem relative to the commitment

case, as we focused on TMPs in that analysis.

More importantly, Markov perfection implies that the stablecoin price (34) may only

depend on history via current state variables (A,C-). This feature rules out collective

punishment of the platform by stablecoin users if it deviates from some reference policy.

Focusing on MPE disciplines the analysis in that the stablecoin price may only depend

on fundamentals and users’ expectations about the platform’s future policies.33

First, we characterize the platform’s policies in an MPE. As in Section 3, we let e(a) =

E(A/C-, 1) be the equity value per coin outstanding. While we assumed TMPs under

commitment, we can show that an MPE policy must be a TMP.

Proposition 3 (Equilibrium Policy). For an optimal programmable interest rate rule,

the equilibrium issuance policy dG in an MPE belongs to the class of TMP introduced in

Definition 3.

As observed above, policies satisfy the Markov property by definition of an MPE.

Proposition 3 shows that equilibrium policies must belong to the class of TMPs with a

default region [0, a], a smooth-issuance region [a, a] and a target region [a,∞). The ability

to characterize equilibrium policies hinges on the time-consistency requirement that

constrains the set of policies in the absence of commitment. In the proof of Proposition 3,

we first establish that the equilibrium equity function is weakly convex and the stablecoin

33Enforcing collective punishments may prove challenging with dispersed and anonymous investors,
as in our model. If investors could use “grim-trigger” strategies to punish the platform, additional
equilibria could be supported. See Malenko and Tsoy (2020), who consider punishments in a related
dynamic leverage choice problem for firms. Following a deviation from the equilibrium policy, the firm
and investors play the MPE of DeMarzo and He (2021), which gives the lowest possible equilibrium
payoff to the firm.
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price is weakly increasing as a function of the demand ratio a. Following arguments by

DeMarzo and He (2021), we then show that the equilibrium issuance policy is smooth

(features jumps) on intervals for which the equity value is strictly convex (linear). The

existence of a default threshold a follows from the fact that the equity value is increasing

in a. Next, we show that if interest policy δ(a) is chosen optimally at date 0, the issuance

policy is smooth over the first part of the no-default region, [a, a] for some a ≥ a. For

values of a ∈ [a,∞), it features a jump to some target demand ratio a?. By definition,

these results imply that the equilibrium policy belongs to the class of TMP.

4.2 Markov Perfect Equilibrium

In the absence of commitment, the platform’s policy must solve its sequential optimization

problem. In particular, in a TMP, the platform must find it optimal ex post to implement

the target from any demand ratio a in the target region [a,∞). The following statement

provides conditions under which implementing the target is indeed ex-post optimal.

Lemma 4. Under limited commitment, the platform implements the target of a TMP if,

for any a, a′ ≥ a in the target region, the following inequality holds[
`(a?)− ϕ(r − µk)

] a′
a?

+ ϕ(r − µk)− (r − δ(a))
a′

a

≥ λ
[
E[e(Sa′)] + 1− ϕ

]
− λ
[
E[e(Sa?)] + E[p(Sa?)]− ϕ

] a′
a?
, (35)

where e and p are the equilibrium equity value and pricing function, respectively.

Condition (35) ensures that implementing demand ratio a? is ex post optimal when

the demand ratio a lies in the target region [a,∞). This implementation condition rules

out a “one-step” deviation whereby, starting from some demand ratio a ∈ [a,∞), the

platform would choose demand ratio a′ 6= a?, stay at a′ during a period of length dt

before reverting to the equilibrium policy. To get some intuition, it is useful to consider

the limit case λ → 0 in which the right-hand side of (35) disappears. Then, in state

(A,C-), the platform prefers implementing the target C?(A) to deviating to C if and

only if34 [
`(a?)− ϕ(r − µk)

]
C?(A) + ϕ(r − µk)C ≥ (r − δ(a))C- (36)

The right-hand side of (36) reflects the difference in liquidity benefit (net of collateral

costs) at the target relative to the deviation. In the latter case, the platform enjoys no

34This condition applies also with ϕ = 1 when λ > 0 because then E[p(Sa?)] = 1 and E[e(Sa)]/a is
constant in the candidate equilibrium induced by the TMP with a = a = 0 (see Section 3).
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liquidity benefit because the peg is lost. By definition of a?, this term is positive. The left-

hand side of (36) captures the ex-post benefits from diluting previously issued stablecoin

in a deviation. To see this, consider equation (32) with pt 6= 1, which characterizes the

price in the deviation. Then, the stablecoin price would fall from 1 to pt = 1− (r − δt),
which implies that the deviation dilutes the market value of outstanding stablecoins by

r − δt.
Next, we show that the platform’s incentives to dilute past stablecoin holders are so

strong that it cannot earn seigniorage when it lacks commitment to the issuance policy.

Proposition 4. There is no programmable interest rate rule in the sense of Definition 4

such that an MPE exists in which the platform earns seigniorage revenues.

In an MPE with a TMP, for any a in the target region, it must be that δ(a) = δ? where

δ? is defined in (23) because the equilibrium policy features a jump to a?. As the interest

rate rule can depend only on the state a, it means that the same interest rate δ? would

apply if the platform were instead to deviate to a′ 6= a?. To see why a deviation cannot

be avoided, consider again condition (36) (the limit case with λ → 0) and set C = C-.

Then, the no deviation condition can hold for any C- if and only if

r − `(a?) = δ? = ϕ(r − µk),

which means that the net revenue flow from the platform is equal to zero. Importantly,

the result applies even with full collateralization (ϕ = 1)—that is, collateral does not

solve the platform’s commitment problem.

Proposition 4 implies that without commitment, a platform cannot earn revenues.

Incentives to dilute past stablecoin holders lead the platform to deviate from the peg ex

post. This behavior neutralizes its ability to earn seigniorage because users enjoy the

liquidity benefit only when the price is pegged. Our result evokes the leverage ratchet

effect in DeMarzo and He (2021), who show that a firm never enjoys any tax benefit of

debt due to incentives to dilute debtholders. In both cases, the commitment problem

resembles that of the durable good monopolist in Coase (1972). A key difference between

their model and ours, however, is the role of collateral. In their framework, the firm

cannot dilute past debtholders via an increase in the probability of default when debt

is (fully) collateralized. In our model, the dilution operates via the liquidity benefit `,

which depends on the total stock of stablecoins outstanding. Hence, dilution incentives

exist even with full collateralization.

We conclude this section by highlighting an interest rate rule that can restore com-

mitment but does not satisfy Definition 4. To achieve this objective, the interest rate
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rule should neutralize the platform’s incentive to dilute stablecoin users ex post via the

stablecoin price. As we show below, such a rule must react not only to the state (At, Ct-)

but also to the current supply choice Ct of the platform.

Proposition 5. Let a = A/C- (a′ = A/C) be the pre- (post-)issuance demand ratio.

Under full collateralization, the interest rate rule

δ(a′) =

r − `(a?(1)) if a′ = a?

r otherwise
(37)

implements the full-commitment outcome under discretionary issuance.

Interest rate rule (37) reacts to the new supply chosen by the platform, which provides

incentives not to deviate. Intuitively, the platform is punished with a higher interest rate

if it deviates from the equilibrium policy a′ = a?. To see why interest rate rule (37)

neutralizes dilution incentives, consider again equation (32), which gives the price in a

deviation, pt = 1 − (r − δt). Then setting δt = δ(a′t) for all a′t 6= a? implies that the

stablecoin price is equal to 1, independently of the supply choice by the platform. Given

that the platform cannot benefit from diluting past stablecoin holders by lowering the

price, choosing the target demand ratio a? maximizes its date-t equity value, as can be

seen from (31). Ultimately, commitment to issuance is restored indirectly via the interest

rate rule that penalizes deviations from the target demand ratio.35

5 Decentralized Protocols

So far, our analysis focused on centralized protocols where the platform directly supplies

stablecoins to the market. In this section, we consider instead decentralized protocols—

with DAI as the most prominent example. Decentralized protocols delegate the issuance

of stablecoins to any users holding eligible collateral. To issue stablecoins, users must

lock assets in a smart contract generated by the protocol, called a “vault.” Vault owners

can unlock their collateral by repurchasing and “burning” stablecoins. In this scheme,

the platform’s equity holders charge a seigniorage fee to vault owners paid in stablecoins.

This fee, net of the interest paid to stablecoin users, is the source of platform profit.36

35In a partially collateralized case (ϕ < 1), an interest rate rule that neutralizes dilution incentives in
the peg region is given by r+λ−`(a?)−λE[p(Sa?)] if a′ = a? and r+λ−λE[p(Sa′)] otherwise, where a?

is the new optimal target demand ratio with limited liability and no commitment to the issuance policy.
36Decentralized stablecoin protocols also feature decentralized decision-making whereby eq-

uity/governance token holders can vote on platform policies. To the extent that all token holders share
a common profit-maximization objective, ownership decentralization does not play a role in our model.
We thus focus on the decentralization of issuance, but still consider a representative equity token holder.

31



We showed in Section 4 that a platform suffers from a commitment problem under

centralized issuance. Decentralizing issuance can thus add value if it mitigates this

commitment problem. For a fair comparison with the centralized case, we assume that

the decentralized platform re-optimizes continuously the interest rate it pays to users, δt,

seigniorage fee, denoted st, that it charges to vault owners. As in Section 4, however, the

collateralization ratio ϕ is set at date 0 and cannot be altered subsequently.

In what follows, we first present the vault owners’ problem. We then present the plat-

form’s optimization problem and show that the full-commitment policy is time consistent

with decentralized issuance—that is, decentralizing issuance can solve the commitment

problem described in Section 4. Finally, we draw a parallel between our results and the

rental solution to the durable good monopolist problem introduced by Coase (1972).

5.1 Vault Owners

Any agent can open a vault and issue stablecoins. A vault is indexed by i with Ci
t- the

amount of stablecoins outstanding for vault i at date t. Every period, a vault owner

chooses to default or to keep the vault open. In the latter case, the vault owner chooses

new issuance dGit subject to collateralization ratio ϕ, its expectation about the platform’s

policies, as well as the price dynamics implied by dynamic demand equation (4), which

she takes as given. Denoting τ i the default time for vault owner i, its problem writes

V i
t (Ci

t-) = max
τ i,dGit

Et
[ ∫ τ i∧τ

t

e−r(s−t)
(
psdGis + ϕµkCi

sds− ϕdCi
s

)]
, (38)

subject to dCi
t = stC

i
tdt+ dGis. (39)

Vault owner’s optimization problem (38) resembles that of a centralized platform, given

by equation 7, with the vault fee st replacing the interest rate δt. A vault owner enjoys

the return on collateral held in the vault and gains from issuance proceeds psdGis net

of collateral purchases ϕdCi
s. As a key difference with a centralized platform, however,

competitive vault owners do not internalize their impact on the stablecoin price pt.

Now, we characterize equilibrium restrictions on the vault owners’ value function, the

stablecoin price, and the platform’s policies implied by vault owners’ optimization. Since

vault owners have no price impact, their issuance gains are linear in the quantity issued.

In any equilibrium with positive and finite stablecoin stock Ct =
∫
i
Ci
tdi, free entry implies

that issuance gains must be equal to zero. Hence, the equilibrium value of a vault is

V i
t (Ci

t-) = (ϕ− pt)Ci
t- . (40)
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That is, we can compute the vault value as if the vault owner never issues stablecoins

(dGit = 0). Intuitively, the vault value equals the collateral held net of the value of

outstanding stablecoins. This characterization of the vault owners’ value function allows

us to derive arbitrage restrictions that competitive vault owners impose on the platform.

Proposition 6. In any equilibrium with positive and finite stablecoin stock Ct at date t,

the stablecoin price cannot exceed the collateralization ratio—that is,

pt ≤ ϕ, (41)

and the stablecoin price and the vault fee satisfy

r(ϕ− pt) = ϕµk − stpt − Et
[
dpt
dt

]
. (42)

The first result follows from an arbitrage argument for vault owners. If the stablecoin

price exceeds the collateralization ratio, vault owners could achieve an unbounded profit

from issuing stablecoins at date t and defaulting next period. Equation (42) obtains by

solving problem (38) for an interior optimum for supply dGit . From equation (40), ϕ− pt
is a vault’s value per stablecoin outstanding. Hence, the right-hand side of (42) is the

opportunity cost from owning a vault, which must be equal to the flow return from owning

a vault. A vault owner enjoys the return on collateral ϕµk and pays the seigniorage fee

st in stablecoins. In addition, the vault value decreases when the stablecoin appreciates

because a vault amounts to a short position in stablecoins. Hence, when the stablecoin

appreciates, a vault owner must pay more to release the vault’s collateral.

Corollary 2. The platform can earn seigniorage revenues in equilibrium only if ϕ ≥ 1.

This result shows that a decentralized platform must be fully collateralized. It follows

directly from the no-arbitrage relationship (41) in Proposition 6 and the observation

that users enjoy liquidity benefits only if the stablecoin is pegged. Hence, with any

collateralization ratio ϕ < 1, the stablecoin price must satisfy pt < 1, and the platform

earns no seigniorage revenue. The platform thus optimally sets ϕ = 1 at date 0 because

it cannot generate profit otherwise. In the next section, we characterize the problem of

a fully collateralized decentralized platform.

5.2 Decentralized Platform Problem and Solution

This section describes the optimization problem of a decentralized platform with full

collateralization (ϕ = 1). With decentralized issuance, the platform sets the interest rate
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δt paid to users and the seigniorage fee st it charges to vault owners, to whom issuance is

delegated. As we do not assume commitment, the platform reoptimizes at every date t.

Problem 2 (Decentralized Platform Problem Without Commitment). A de-

centralized platform chooses its interest rate policy {δt}t≥0 and its seigniorage fee policy

{st}t≥0 sequentially to maximize its equity value at every date t,

Et = max
τ,δ,s

Et
[ ∫ τ

t

e−r(s−t)
(
ss − δs

)
psCsds

]
, (43)

subject to stablecoin pricing equation (4), the no-Ponzi Game condition (8), and the vault

owner’s arbitrage conditions (41) and (42).

Similar to the centralized case, the monopolistic platform effectively chooses both policy

variables δ and s as well as the stablecoin price p and the supply C subject to the pricing

constraints imposed by the competitive behavior of other agents. As before, equation (4)

follows from competitive stablecoin pricing by users. Specific to the decentralized case,

constraints (41) and (42) follow from vault owner’s competitive supply decisions.

The decentralized issuance model changes the platform’s sequential optimization prob-

lem in a fundamental way. As can be seen from (43), the platform’s profit flow is now

proportional to the stablecoin stock Ct as opposed to new issuance dGt. The latter feature

generated the commitment problem with centralized issuance analyzed in Section 4 as it

gave the platform’s incentives to dilute previously issued stablecoins. With decentralized

issuance, the platform’s model changes from an issuance-based revenue flow to a rental

based-revenue flow. As our next result shows, such incentives disappear with the rental-

based revenue model under decentralized issuance.

Proposition 7 (Decentralized Protocol Equilibrium). A fully-collateralized de-

centralized platform without commitment implements the full-commitment outcome of

Proposition 1. The equilibrium stock of stablecoins thus satisfies

Ct = arg max
C

{
`(At, C)C + (µk − r)C

}
≡ C?(At, 1). (44)

To implement C?(A), the platform sets a vault fee schedule of the form

s(a)− δ(a) =


`(a) + (µk − r)/p(a) + ε if Ct > C?(At, 1),

`(a?(1)) + µk − r if Ct = C?(At, 1),

`(a) + (µk − r)/p(a)− ε if Ct < C?(At, 1),

(45)

where ε is strictly positive. The equilibrium interest rate is δ? = r − `(a?(1)).
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Proposition 7 shows that the full-commitment outcome of Section 3 is time consistent

when the platform delegates issuance to vault owners, in contrast with our result for cen-

tralized issuance in Section 4. Hence, delegated issuance dominates centralized issuance

when the platform lacks commitment. As mentioned above, a decentralized platform

earns a rental income on the total stock of stablecoins, as opposed to an issuance profit

from new stablecoins issued. This feature kills incentives to dilute past stablecoins, which

generates the commitment problem in the centralized case.

With decentralized issuance, the platform implements the full-commitment solution

even as it reoptimizes sequentially. Similar to Proposition 1, the platform implements the

stablecoin stock C?(At) that maximizes the liquidity benefit flow net of collateral costs,

given by (44). Unlike in the centralized case, however, the platform does not directly

control supply. The second part of Proposition 7 thus shows how the platform can use

the seigniorage fee to steer issuance by vault owners. To get some intuition, suppose

that the stock of stablecoins lies below the platform’s target—that is, Ct < C?(At). The

platform would then lower the fee to stimulate issuance until Ct reaches C?(At). At

this point, vault owners become indifferent about issuance. These adjustments occur

instantaneously in equilibrium, so that equation (45) describes an off-equilibrium fee

schedule.

To explain why decentralized issuance neutralizes the platform’s incentives to manipu-

late the stablecoin price, consider the discretized version of Problem 2, as in the argument

of Section 4. As noted before, the platform implicitly chooses all endogenous variables

under constraints imposed by the competitive behavior of other agents. Denoting E the

platform’s equity value function, the discretized problem is

max
δt,st,pt,Ct

(st−∆t − δt−∆t)ptCt−∆t∆t+ (1− r∆t)Et[E(At+∆t, Ct, δt, st)], (46)

subject to pricing equation (4) and the arbitrage constraints, (41) and (42), respectively

pt = `(At, Ct)1{pt=1}∆t+ (1− r∆t)Et[(1 + δt∆t)pt+∆t], (47)

1− pt = (1− r∆t)Et
[
(1 + µk∆t)− (1 + st∆t)pt+∆t

]
, (48)

pt ≤ 1. (49)

At date t−∆t, the platform chose the interest rate δt−∆t and the vault fee st−∆t that

applies to the stock Ct−∆t. These interest payments occur at date t, which explains the

expression for the platform’s rental profit flow—the first term of (46). The stablecoin

price enters the platform’s rental flow because its net seigniorage fee s − δ is paid in
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stablecoins.

To see why the full-commitment solution is time consistent, we follow the same one-

step deviation argument as in Section 4. Suppose that the platform implements the full-

commitment solution at all dates but t and consider its date-t optimization problem under

these premises. Then, given date-t preset variables Ct−∆t = C?(At−∆t), δt−∆t = r− `(a?)
and st−∆t = µk, the platform maximizes

(`(a?) + µk − r)ptC?(At−∆t)∆t+ (1− r∆t)Et[(st − δt)pt+∆tCt∆t]. (50)

The expression above does not include the terms for periods t + n∆t for n ≥ 2 because

the platform implements the commitment policy after date t. Using pricing equations

(47) and (48) to substitute for the second term in (50), the platform maximizes:37

Πt = (`(a?) + µk − r)ptC?(At−∆t)∆t+
[
`(At, Ct)1{pt=1} − ϕ(r − µk)

]
Ct∆t. (51)

The second term of (51) is the liquidity benefit net of the collateral flow cost, which

is maximized at the full-commitment solution with C?(At) = At/a
?(1) and pt = 1. A

deviation is profitable only if it increases the first term of (51) relative to its value under

the full-commitment policy. This requires increasing the stablecoin price pt above 1,

which arbitrage condition (49) rules out because competitive vault owners maintain the

price below the collateralization ratio ϕ = 1 (Proposition 6). Hence, the full commitment

policy is time-consistent for a decentralized stablecoin protocol. That is, decentralizing

issuance solves the commitment problem that plagues a centralized platform.38

5.3 Decentralizing Issuance vs. Renting Stablecoins?

Decentralizing issuance solves the platform’s commitment problem because its profit flow,

which is proportional to new issuance dGt in the centralized case, becomes rental-based

since it is now proportional to the stablecoin stock Ct. In this respect, decentralized

issuance is similar to the rental solution to the durable good monopolist problem analyzed

by Coase (1972) and Bulow (1982), among others. Renting a durable good solves the

monopolist’s commitment problem because the full stock of goods is repriced every period.

Instead, in an outright sale market, a seller without commitment fails to internalize the

37In equation (50) we ignored the term −rµk(∆t)2 which the platform cannot influence via its policy.
38The reader may have noticed that any deviation gain from altering the first term of (51) relative

to the commitment solution is of order (∆t)2 because the price deviation pt − 1 must be of order ∆t if
pt+∆t = 1. Hence as ∆t → 0, any deviation gain becomes negligible relative to the order-∆t deviation
loss generated by the second term of (51). Our argument based on arbitrage constraint (49), however,
shows that the result is not an artifact of the continuous time limit.
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effect of a drop in the price of previously sold goods caused by future issuance. Similarly,

in our model, decentralized issuance and its rental-based revenue model neutralizes the

platform’s incentives to dilute previously issued stablecoins with new issuance.

While the analogy with the rental solution of Coase (1972)’s problem helps explain

our result, nontrivial differences remain with our model. First, in the rental solution to

the durable good monopolist problem, the rental market between the producer and users

replaces the primary market. Every period, users return the good to the producer and

can rent it again at a newly set rate. Instead, in our model, a market for buying and

selling stablecoins between vault owners and users still exists alongside the decentralized

protocol. Indeed, the liquidity benefit depends directly on the stablecoin price, which

implicitly requires the presence of such a market. While the latter feature is an assump-

tion of our model, it captures the fact that, unlike for durable goods, direct benefits from

holding money-like assets derive from users’ ability to exchange those stablecoins.

The role of collateral is a second difference from the original rental solution. Suppose

that users could rent stablecoins without locking collateral in a vault. Anonymous users

would then enter a rental contract and immediately sell the stablecoin in the market

without paying rental fees to the platform. Collateral helps prevent this behavior. Users

thus deposit collateral in a vault to draw stablecoins, which ensures that the platform can

collect fees. In our model, we introduce a distinct group of users who play this role—vault

owners—to better connect the model with the empirical design of decentralized stablecoin

protocols, but this distinction is unimportant for the result.

6 Conclusion

This paper proposes a model to study the (merits and) vulnerabilities of various stablecoin

designs when the issuer faces a time-consistency problem. Our analysis shows that

partially collateralized platforms are always vulnerable to large demand shocks, even

under full commitment. The optimal collateralization level under commitment thus

trades off resilience against these shocks against collateral holding costs. Collateral alone,

however, does not solve the platform’s time-consistency problem, whereby the issuer

tends to inflate previously issued stablecoins via peg deviations. When combined with

full collateralization, decentralization of issuance to competitive vault owners—a design

similar to DAI—can restore commitment. To focus on our main research question, we

assumed a reduced-form liquidity benefit for stablecoins and considered the problem

of a single stablecoin issuer using riskless collateral. We leave the analysis of these

microfoundations and extensions to future research.
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Appendices

A Proofs

A.1 Proof of Proposition 1

Substituting for dGt = dCt − δtCtdt, the objective function can be written as

E0 = max
ϕ,{δt,dGt}t≥0

E0

[∫ ∞
0

e−rt
(
ptdCt − δtptCtdt+ µkϕCtdt− ϕdCt

)]
. (A.52)

Integrating the terms in dCt by parts, we obtain

E0 = max
ϕ,{δt,dGt}t≥0

E0

[[
(pt − ϕ)Cte

−rt]∞
0
−
∫ ∞

0

e−rtCt
(
dpt − r(pt − ϕ)dt+ δtptdt− µkϕ

)]
= max

ϕ,{δt,dGt}t≥0

E0

[∫ ∞
0

e−rt
(
`(At, Ct)1{pt = 1}+ (µk − r)ϕ

)
Ctdt

]
. (A.53)

To obtain the second line, we guess and verify that limt→∞ E0[(pt − ϕ)Cte
−rt] = 0. We

use pricing equation (4) to substitute for dpt − (r − δ)ptdt within the expectation.

Equation (A.53) shows that setting ϕ = 0 is optimal. Next, δt is only determined to
the extent that it maintains the price peg, and we can rewrite equation (A.53) as

E0 = max
{δt,dGt}t≥0

E0

[∫ ∞
0

e−rt`(At, Ct)Ct1{pt = 1}dt
]
. (A.54)

Assuming that such interest rate policy can be chosen, the platform’s problem is static,
and the optimal issuance rule is such that Ct maximizes `(At, Ct)Ct. By Property iii
in Assumption 1, this maximizer exists, is unique, and is given by (12). The fact that
C?(A, 0) = A/a?(0) is linear in A follows from Property ii in Assumption 1. Moreover,
our conjecture limt→∞ E0[(pt − ϕ)Cte

−rt] = 0 and the fact that the objective function is
bounded follows from the fact that At grows at a rate inferior to r. Finally, the interest
rate policy must be such that pt = 1 for all t, which holds with δ(a?(0)) = r − `(a?(0)).

The optimal issuance-repurchase policy {dGt}t≥0 features a jump from 0 to C∗(A0, 0)
at date 0 and is such that dGt + δtCtdt = dAt for t > 0. This concludes the proof.

Now, we derive the expression for the date-0 equity value, equation (13), thanks to
Proposition 1. For future reference, we compute the equity value Et at any date, and for
all values of ϕ ∈ [0, 1] under the optimal full-commitment policy. Starting from equation
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(A.53), we have

Et = −(pt − ϕ)Ct- + E0

[∫ ∞
t

e−r(s−t)
(
`(As, Cs)1{ps = 1}+ (µk − r)ϕ

)
Csds

]
,

= −(pt − ϕ)Ct- +
`(a?(ϕ)) + µk − r

a?(ϕ)
E0

[∫ ∞
t

e−r(s−t)Asdt

]
. (A.55)

Remember that Ct- is the left limit of the supply process Cs at s = t. To obtain the
second line, we substituted for the optimal supply policy, Cs = C?(As, ϕ) = As/a

?(ϕ).
Using then equation (5) that describes the law of motion for At, we obtain

Et = −(pt − ϕ)Ct- +
`(a?(ϕ)) + µk − r
a?(ϕ)

(
r − µ+ λ

ξ+1

)At. (A.56)

Setting t = 0 and C0- = 0, we obtain equation (13).

A.2 Proof of Lemma 1

The fact that the optimal full-commitment policy violates limited liability (9) if and only
if ϕ < 1 obtains directly from equation (16).

For the second part of Lemma 1, set pt = ϕ = 1 in equation (16). The equity value is
positive if and only if the numerator of the first term is positive, that is, if and only if
`(a?(1)) ≥ r − µk. This concludes the proof.

A.3 Proof of Lemma 2

First, we derive the value of the interest rate δ? paid by the platform at the target ratio
a? in order to maintain the peg. To do so, we derive the dynamic equation for the price
at the target. Given that the price at the target ratio is 1, we obtain

1 =
(
δ? + `(a?)

)
dt+ (1− rdt)(1− λdt)E[p(a? + da)] + (1− rdt)λdtE[p(Sa?)]. (A.57)

The third (last) term in equation (A.57) corresponds to smooth changes (jumps) in
demand At. After a smooth change in demand, the peg still holds given that the platform
maintains the target, that is, p(a?+da) = 1 in this case. After a jump, however, the price
may fall below 1 if Sa? ≤ a. Plugging p(a? + da) = 1 into equation (A.57), we obtain
equation (23).

Now, we prove the second part of Lemma 2. The main step is to show that e(a) = 0 is
optimal for all a ≤ [a, a]. Note that e(a) = 0 for a ≤ a holds by definition of a TMP. We
then derive the optimal issuance policy in the smooth region.

To show that e(a) = 0, for all a ≤ [a, a], consider the total platform value at date t,
denoted Ft. The total platform value includes both the equity value, Et and the net value
of stablecoins outstanding, (pt − ϕ)Ct- . At date 0, equity value and total platform value
are equal, so the platform’s objective is to maximize the date-0 total platform value.
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Consider a demand ratio a = A/C > a. In this, case F only depends on A—not on
the outstanding stock of stablecoins C—and we denote F̄ (A) to avoid confusion. Let τS
denote the first (stochastic) time when a shock S ≤ a/a? hits. We have

F̄ (A0) = EτS

[ ∫ τS

0

e−rt
(
`(At, C

?(At))C
?(At) + ϕ(µk − r)C?(At)

)
dt

+ e−rτSE
[
F (SAτS , C

∗(AτS))
∣∣∣Sa∗ ≤ a

] ]
. (A.58)

Given values for (a?, a), maximizing value F̄ (A0) consists in maximizing the second term
of the above equation. We thus explicit the dynamic equation for F (A,C) in the region
where a = A/C ∈ [a, a]. For a given a ∈ [a, a], denote τ+(a) the first stochastic time when
at = a and τ−(a) the first stochastic time when at = a. Let τ(a0) = min{τ+(a0), τ−(a0)}.
We have

F (A0, C0) = Eτ(a0)

[∫ τ(a0)

0

e−rt(µk − r)ϕCtdt

+ e−rτ(a0)
(
1{τ(a0) = τ+(a0)}F̄ (Aτ(a0)) + 1{τ(a0) = τ−(a0)}ϕCτ(a0)

)]
,

(A.59)

where the law of motion for Ct is given by (6). The dividend flow for the total platform
is negative in the region [a, a]. Hence, maximizing F (A,C) in region [a, a] and thus
F̄ (A) amounts to minimizing the expected time τ+(a) from any given point a. Given the
policies in [a, a] in (17), we have

E
[
dat
at

]
=

(
µ− λ

ξ + 1

)
dt− (δt +Gt/Ct)dt. (A.60)

Hence the platform seek to minimize δt and Gt subject to the constraint that equity value
E(A,C) remains positive for A/C ∈ [a, a].

In the next step, we derive the recursive equation for the equity value in order to pin
down the minimum value of g and δ such that limited liability holds in region [a, a]. In
doing so, we guess and verify that it holds for [a,∞). Adapting Equation (7), we have

E(A,C) =p(A,C)G(A,C)dt+ µkϕCdt− ϕdC
+ (1− rdt)(1− λdt)E[E(A+ dA,C + dC)] + (1− rdt)λdtE[E(SA,C)].

(A.61)

Using Ito’s Lemma for the term E(A + dA,C + dC) above and keeping only terms of
order dt, we obtain the following HJB:

(r + λ)E(A,C) = (p(A,C)− ϕ)G(A,C) + (µk − δ(A,C))ϕC + µAEA(A,C) +
σ2

2
EAA(A,C)

+ (δ(A,C)C +G(A,C))EC(A,C) + λE[E(SA,C)]. (A.62)
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Using the normalized equity value, e(a) = E(A,C)/C, we obtain EA(A,C) = e′(a),
EAA(A,C) = e′′(a), EC(A,C) = e(a)− ae′(a). Introducing the normalized issuance rate,
g(a) ≡ G(A,C)/C, we get

(r + λ)e(a) =(p(a)− ϕ)g(a) + µae′(a) +
σ2

2
e′′(a) + (δ(a) + g(a))(e(a)− ae′(a))

+ (µk − δ(a))ϕ+ λE[e(Sa)]. (A.63)

It follows from the equation above that the minimum value of g(a) such that e(a) ≥ 0
for all a ∈ [a, a] is given by

g(a) = −µ
k − δ(a)

p(a)− ϕ ϕ. (A.64)

Given policy g(a) above and e(a) = e′(a) = 0, the impact of δ(a) is offset in HJB equation
(A.63) and we can set δ(a) to its minimum at 0 for a ∈ [a, a]. This concludes the proof.

A.4 Proof of Lemma 3

First, we characterize the price dynamics in region [a, a]. The price equation can be
written as

p(A,C) = (1− rdt)(1− λdt)E[p(A+ dA,C + dC)] + (1− rdt)λdtE[p(SA,C)]. (A.65)

When a ∈ [a, a], stablecoin owners enjoy no cash flow because the platform optimally
sets δ(a) = 0 and liquidity benefits are equal to 0 since p(a) < 1. Using dC = g(a)Cdt,
the first term on the right-hand side can be expanded using Ito’s Lemma:

E[p(A+ dA,C + dC)] = p(A,C) + pA(A,C)µAdt+
σ2

2
A2pAA(A,C)dt+ pC(A,C)g(a)Cdt

= p(a) + (µ− g(a))ap′(a)dt+
σ2

2
a2p′′(a)dt. (A.66)

To obtain the second line, we use the homogeneity of degree 0 of the price function,
that is, p(A/C) ≡ p(A,C), to replace pA(A,C) = p′(a)/C, pAA(A,C) = p′′(a)/C2 and
pC(A,C) = −p′(a)A/C2. Substituting (A.66) into (A.65) and keeping only terms of order
dt, we obtain

0 = −(r + λ)p(a) + (µ− g(a))ap′(a) +
σ2

2
a2p′′(a) + λE[p(Sa)]. (A.67)

Equation (A.67) characterizes the price dynamics in region [a, a] together with the bound-
ary conditions p(a) = 1 and p(a) = ϕ.

Next, we solve for the price function for ϕ = 0. Anticipating on the result from
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Proposition 2 that a = 0 when ϕ = 0, we conjecture the following pricing function:

p(a) =

{ ∑3
k=1 bka

−γk if 0 ≤ a < a,
1 if a ≥ a.

(A.68)

The following computations will be useful to solve for equation (A.67). We have

p′(a) = −
3∑

k=1

bkγka
−(γk+1), (A.69)

p′′(a) =
3∑

k=1

bkγk(γk + 1)a−(γk+2), (A.70)

E[p(Sa)] =

∫ ∞
0

p(e−sa)ξe−ξsds =

∫ ∞
0

3∑
k=1

bke
sγka−γkξe−ξsds =

3∑
k=1

bkξa
−γk

ξ − γk
. (A.71)

Substituting into (A.67) and setting g = 0 (Lemma 2), we derive conditions on {γk}k=1,2,3.
Equalizing terms proportional to a−γk , we obtain that for each k ∈ {1, 2, 3}, γk must be
a root of characteristic equation (27). The roots of this third-order polynomial are

γk = − 1

2t1

(
t2 + ζνR +

∆0

ζνR

)
(A.72)

where

∆0 = t22 − 3t1t3, ∆1 = 2t32 − 9t1t2t3 + 27t21t4,

R =
3

√
∆1 +

√
∆2

1 − 4∆3
0

2
, ζ =

−1 +
√
−3

2
, ν = {0, 1, 2},

t1 = −σ
2

2
, t2 = µ+

σ2

2
(ξ − 1), t3 = −µξ +

σ2

2
ξ + r + λ, t4 = −rξ.

According to Descartes’ rule of sign, this polynomial has two positive roots and one
negative root. Furthermore, using Budan-Fourier theorem, we can show that the negative
root is strictly lower than -1. Because the price is bounded below by 0, the coefficients
bk, which correspond to positive roots must be 0. We now call γ the negative root of this
polynomial and b the corresponding coefficient.

The price function is thus given by p(a) = ba−γ for a ∈ [0, a]. To determine b, we use
boundary condition p(a) = 1 to get b = aγ. This concludes the proof.

A.5 Proof of Proposition 2

We proceed in three steps. First, we derive e(a?) as a function of δ? for any ϕ ∈ (0, 1) to
derive equation (25). Then, we show that a = 0 when ϕ = 0. Finally, we solve explicitly
for e(a?) when ϕ = 0.
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Step 1. The equity value for a ∈ [a,∞) is given by (21). We are thus left to derive the
HJB for the equity value at demand ratio e(a?). The recursive equation is given by

E(a?C-, C-) = µkϕC-dt− ϕdC + (1− rdt)(1− λdt)E [E(a?C- + dA,C- + dC)| dNt = 0]

+ (1− rdt)λdtE [E(Sa?C-, C-)| dNt = 1] , (A.73)

where the term on the first line corresponds to the case in which the adjustment in
demand At is smooth (dNt = 0), while the second term corresponds to the case in which
demand jumps (dNt = 1).

To express the term corresponding to Brownian shocks, use equation (21) and dC =
δ(a?)Cdt to obtain the following relationship by Ito’s Lemma:

E [E(a?C- + dA,C- + dC)| dNt = 0] = E(a?C-, C-) + µ
[
e(a?) + 1− ϕ

]
C?(A)dt

− (1− ϕ)δ?C?(A)dt. (A.74)

Keeping only terms of order at least dt and dividing by C?(A) in equation (A.73), we
obtain

e(a?) = e(a?) +
(
−(r + λ)e(a?) + µ

[
e(a?) + p(a?)− ϕ

]
− δ? + µkϕ+ λE[e(Sa?)]

)
dt,

(A.75)
which simplifies to equation (25).

Next, we compute the term E[e(Sa?)] in equation (25). Using (21), we get

E[e(Sa?)] =

∫ ln(a?/a)

0

e(e−sa?)ξe−ξsds (A.76)

=

∫ ln(a?/a)

0

[
(e(a?) + 1− ϕ)e−s − 1 + ϕ

]
ξe−ξsds (A.77)

=
ξ

ξ + 1

(
1−

(
a?

a

)−(ξ+1)
)

(e(a?) + 1− ϕ)−
(

1−
(
a?

a

)−ξ)
(1− ϕ).

(A.78)

Plugging this equation in (A.75), we get(
r +

λ

ξ + 1
− µ+

λξ

ξ + 1

(
a?

a

)−(ξ+1)
)
e(a?)

=

(
µk − µ+

λ

ξ + 1
− λ

(
a?

a

)−ξ
+

λξ

ξ + 1

(
a?

a

)−(ξ+1)
)
ϕ

+

(
µ− δ? − λ

ξ + 1
− λξ

ξ + 1

(
a?

a

)−(ξ+1)

+ λ

(
a?

a

)−ξ)
p(a?). (A.79)
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After some manipulations, we can rewrite the objective function as

e(a?) + 1− ϕ
a?

=
(µk − r)ϕ+ r − δ? + λ(1− ϕ)

(
a?

a

)−ξ
r − µ+ λ

ξ+1
+ λξ

ξ+1

(
a?

a

)−(ξ+1)
. (A.80)

Step 2. Now, we prove that a = 0 when ϕ = 0. Equation (A.80) shows that for given
{a, a?}, the objective function may depend on a only via the term −δ?. From equation
(23), this term itself may depend on a only via E[p(Sa?)] and is increasing with E[p(Sa?)].
For given (a, a), however, we showed in the proof of Lemma 3 that the price when a ≤ a
is fully pinned down by the boundary condition p(a) = 1 and that p(a) is positive and
strictly increasing for all a ∈ [0, a] with p(0) = 0. Hence, it must be that a = 0.

Step 3. Finally, we show that the maximization problem of the platform at date 0 is
given by (28). Rewriting equation (A.80) for ϕ = 0, we obtain

e(a?) + 1

a?
=

r − δ? + λ
(
a?

a

)−ξ
r + λ

ξ+1
− µ+ λξ

ξ+1

(
a?

a

)−(ξ+1)
. (A.81)

We derive δ(a?) as a function of the TMP parameters below. From equation (23), we
have

δ? = r − `(a?) + λ (1− E[p(a?S)]) ,

= r − `(a?) + λ− λ
[∫ ln(a?/a)

0

ξe−ξsds+

∫ ∞
ln(a?/a)

(
a?

a

)−γ
esγξe−ξsds

]
,

= r − `(a?) + λ− λ
[

1−
(
a?

a

)−ξ]
− λ ξ

ξ − γ

(
a?

a

)−ξ
. (A.82)

Substituting for δ? into (A.81), we obtain

e(a?) + 1 =
`(a?) + λξ

ξ−γ

(
a?

a

)−ξ
r + λ

ξ+1
− µ+ λξ

ξ+1

(
a?

a

)−(ξ+1)
. (A.83)

Simple computations show that this equation is equivalent to (28) if the liability constraint
(29) holds. From Lemma 2, we have e(a) = 0 for all a ∈ [0, a] and, from equation (21),
e(a) strictly increases with a for a ∈ [a,∞). Hence, limited liability holds for all a if
e(a) = 0. Using equation (20) with ϕ = 0 and p(a?) = 1, condition e(a) = 0 is equivalent
to equation (29). This concludes the proof.

A.6 Proof of Corollary 1

Proposition 2 shows that an equilibrium with positive equity value exists if there exist
(a, a?) with a ≤ a? such that condition (29) holds. Using equation (28) to substitute for
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e(a?) + 1, this condition holds if there exists a? and x ∈ [0, 1] such that

`(a?)x− u− v(γ)xξ+1 ≥ 0, with u ≡ r +
λ

ξ + 1
− µ, v(γ) ≡ λξ

ξ + 1
− λξ

ξ − γ . (A.84)

To derive implications from this condition, define H : x 7→ x
u+v(γ)xξ+1 and let xmax be the

value of x where H attains its global maximum on [0, 1]. We have

H ′(x) ∝ u− v(γ)ξxξ+1, (A.85)

which is strictly decreasing with x because v(γ) > 0 since γ < −1 (Lemma 3). Two
cases are then possible. Either H ′(1) = u − ξv(γ) ≥ 0 and xmax = 1 or H ′(1) < 0

and xmax =
(

u
v(γ)ξ

) 1
ξ+1

so that overall xmax = min
{

1, u
v(γ)ξ

} 1
ξ+1

and, for a given a?, a

necessary and sufficient condition for the desired equilibrium to exist is

`(a?) ≥ u+ v(γ)xξ+1
max

xmax
=
u+ v(γ) min

{
1, u

v(γ)ξ

}
min

{
1, u

v(γ)ξ

} 1
ξ+1

. (A.86)

A necessary condition for (A.86) to hold is `(a?) ≥ u, which is equivalent to (30). This
concludes the proof.

A.7 Proof of Proposition 3

We first state a series of Lemmas and prove them at the end of this section.

Lemma 5. The equity value e(a) is weakly convex and continuously differentiable, and
stablecoin price function p(a) is continuous and increasing.

Lemma 6. If equity value e(a) is linear over some interval [aL, aU ], the equilibrium
issuance policy features a target demand ratio ajump ∈ [aL, aU ] such that the issuance
policy for any a ∈ [aL, aU ] is to jump at ajump.

Lemma 7. If equity value e(a) is strictly convex over some interval [aL, aU ], the equi-
librium debt policy is smooth in that region. Furthermore, there is no MPE with strictly
positive equity value if the equilibrium issuance policy is smooth everywhere.

Proposition 3 is then a corollary of the next result.

Lemma 8. If the programmable interest rate rule is optimally chosen at date 0, there
exist (a, a?) such that the equilibrium issuance policy is smooth over [0, a] and features a
jump at some a? ∈ [a,∞) when a ∈ [a,∞).

We now provide a proof for these lemmas.

Proof of Lemma 5. These properties follow from Lemma A.1 in DeMarzo and He (2021).
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Proof of Lemma 6. We first show that if equity value e(a) is linearly increasing in a over
some segment [aL, aU ] (with strictly positive slope), the equilibrium issuance policy is
not smooth over this interval. We then show that there is a single jump point in this
segment.

The proof is by contradiction. Suppose that dGt = G(a)dt over [aL, aU ] with g(a) ≡
G(a)/C, the stablecoin issuance rate per unit of stablecoins. With a smooth debt policy,
use equation (A.62) to rewrite the HJB equation for the equity value as follows:

(r + λ)e(a) = max
g

{
g(p(a)− ϕ) + µae′(a) + (µk − δ(a))ϕ

+ (g + δ(a))(e(a)− e′(a)a) +
σ2

2
a2e′′(a) + λE[e(Sa)]

}
. (A.87)

A smooth debt policy is optimal if the first-order condition with respect to g is satisfied;
that is, if

p(a)− ϕ = e′(a)a− e(a). (A.88)

The assumption that e(a) is linear in a further implies that p′(a) = e′′(a)a = 0, so we
write p(a) = p in what follows. Hence, equation (A.87) simplifies to

(r + λ)e(a) = µkϕ− δ(a)p+ µae′(a) + λE[e(Sa)]. (A.89)

We now establish a contradiction between equations (A.88) and (A.89) when e(a) is
linear. Taking the first-order-derivative with respect to a of the terms in (A.89), we
obtain

(r + λ)e′(a) = −δ′(a)p+ µe′(a) + λE[e′(Sa)S]. (A.90)

Adapting equation (A.67) to the general case with δ and ` different from 0, the HJB
equation for the stablecoin price is given by

(r + λ)p(a) = `(a)p(a) + δ(a)p(a)− (g(a) + δ(a))ap′(a) + µap′(a) +
σ2

2
a2p′′(a) + λE[p(Sa)],

(A.91)

which, for a constant p(a) = p, simplifies to

(r + λ)p = `(a)p+ δ(a)p+ λE[p(Sa)]. (A.92)

Combining equations (A.89), (A.90), and (A.92), we obtain

0 = (r + λ)(p(a)− ϕ+ e(a)− e′(a)a) = (µk − r)ϕ+ `(a)p+ δ′(a)ap(a). (A.93)

The last equality follows from equation (A.88). We proved this relationship for segments
in which the equilibrium issuance policy is smooth. For segments over which the issuance
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policy features jumps, equation (20) shows that for any a, a′ in this segment, we have

e(a′) =
[
e(a) + p− ϕ

]a′
a
− (p− ϕ). (A.94)

Taking the first-order derivative with respect to a′ and then setting a′ = a, we obtain
equation (A.88).

Now, we establish a contradiction. Suppose first that aL = 0. Thus p = ϕ and
E[p′(Sa)S] = 0 for a ∈ [aL, aU ]. Then, if p 6= 1 and thus `(a) = 0, it is immediate that
equations (A.93) and (A.92) are inconsistent. If instead p = 1, these two equations imply
that

(µk − r)ϕ+ `(a)− `′(a)a = 0,

but the functional form of `(a) cannot be pinned down by these equilibrium conditions
because it is a primitive of the problem.

Suppose now that aL > 0. As a first subcase, suppose in addition that p(a) = p 6= 1,
in which case `(a) = 0 by definition. Equations (A.93) and (A.92) then imply that

δ′(a) =
r − µk
ap

ϕ = −λE[p′(Sa)S]. (A.95)

This equation cannot hold, because r > µk while p′ ≥ 0 by Lemma 5. Finally, suppose
that p(a) = 1. Equations (A.92) and (A.93) imply together that

(µk − r)ϕ+ `(a)− `′(a)a

a
= λE[p′(Sa)S]. (A.96)

We have

E[p′(Sa)S] =

∫ ∞
0

p′(e−sa)ξe−s(ξ+1)ds =

∫ ∞
ln(a/aL)

p′(e−sa)ξe−s(ξ+1)ds = κa−(ξ+1) (A.97)

where κ ≡ aL
ξ+1
∫∞

0
p′(e−saL)ξe−s(ξ+1)ds is a positive constant. To obtain the second

line, we use the fact that p is constant over [aL, aU ]. Thus, we must have

`(a) = `′(a)a− (µk − r)ϕa+ λκa−ξ (A.98)

for a ∈ [aL, aU ]. Hence, assuming that the issuance policy is smooth implies that `(a)
must be the solution of functional equation (A.98). Again, this is a contradiction because
`(a) is an exogenous function in this problem.

Now, we show that there is only one jump point ajump ∈ [aL, aU ] if e(a) is linear over
[aL, aU ]. Suppose there are two such jump points (the argument generalizes for more
jump points) labeled a1

jump and a2
jump. Then, the single-peak property iii in Assumption

1 ensures that there must be one jump point—say, a1
jump—for which liquidity benefits

A`(a)/a are larger than at a2
jump. Hence, to maximize its date-0 value, the platform would

strictly prefer jumping to a1
jump from any point in [aL, aU ] rather than to a2

jump.

We are left to show that jumping to a1
jump instead of a2

jump is compatible with the
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equilibrium issuance policy. By Lemmas 7 and 6, the issuance policy features jumps on
[aL, aU ] only if equity value is linear and price is constant. Hence, from any state a with
jump point a2

jump, we have

e(a) =
[
e(a2

jump) + p(a2
jump)− ϕ

] a

a2
jump

=
[
e(a1

jump) + p(a1
jump)− ϕ

] a

a1
jump

. (A.99)

Hence, jumping to a1
jump is also an optimal equilibrium issuance policy. This equality

simply reflects the fact that the platform is indifferent ex post between all points in
[aL, aU ]. At date-0, however, the platform would choose jump point a1

jump as the sole
jump point.

Proof of Lemma 7. We first show that if equity value E(A,C) is strictly convex in C
over some interval, the issuance policy is smooth in this region. Given any debt level Ĉ,
equity holders have the option to adjust the stock of stablecoins to C by issuing C − Ĉ
at the price of p(A,C). Therefore, by optimality of the debt issuance policy, the equity
value at Ĉ must satisfy

E(A, Ĉ) ≥ E(A,C) + p(A,C)(C − Ĉ). (A.100)

To show that discrete repurchases are suboptimal, we prove that inequality (A.100) is
strict if the equity value is strictly convex with respect to its second argument. Suppose
to the contrary that there exists C ′ 6= C such that E(A,C ′) = E(A,C)+p(A,C)(C−C ′).
By strict convexity of E, we get that for all x ∈]0, 1[

E(A, xC + (1− x)C ′) < xE(A,C) + (1− x)E(A,C ′) = E(A,C) + (1− x)p(A,C)(C − C ′).
(A.101)

Using then condition (A.100) for Ĉ = xC + (1− x)C ′, we obtain

E(A, xC + (1− x)C ′) ≥ E(A,C) + (1− x)p(A,C)(C − C ′), (A.102)

which is a contradiction with (A.101). Thus, it must be that

E(A,C ′) > E(A,C) + p(A,C)(C − C ′). (A.103)

Hence, any discrete issuance with |C − C ′| > 0 would be suboptimal for shareholders;
that is, the debt policy must be smooth if E is strictly convex in C.

Second, we show that there cannot be an equilibrium with positive equity value and a
smooth debt policy for all a. For the equilibrium issuance policy to be smooth, it must
be that equation (A.88) holds. The platform starts at date 0 if liquidity benefits can be
captured in equilibrium. Two cases are possible, given that p is weakly increasing with
a. First, there exists an interval [aL, aU ] over which the price is constant with p(a) = 1.
Equation (A.88) then implies that e is linear. We can then use Lemma 6 to show that
the equilibrium debt policy features jump, a contradiction. The second case is that of
a single point â for which p(â) = 1 and such that the platform spends strictly positive
time at â. Such a feature requires that the platform perform a control at â. The same
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arguments used in DeMarzo and He (2021), however, show that such a policy cannot be
part of an equilibrium in a region in which the equity value is strictly convex.

Proof of Lemma 8. From Lemma 5, we know that since the equity value e(a) is weakly
convex, there must be a strictly ordered sequence {a(n)}n≥0 such that a0 = a is the
liquidation threshold and limn→∞ a

(n) = ∞ such that on each segment [a(n), a(n+1)], e is
either strictly convex or linear, with different convexity on two consecutive segments.

Our second step is to show that there is at least 1 segment with e(a) strictly convex
(possibly empty), and one segment with e(a) linear. We first establish that the equity
value cannot be linear on segment [a(0), a(1)] unless a(0) = 0 and ϕ = 1. Suppose first that
a(0) > 0 so that the platform may liquidate itself in equilibrium. If e(a) is linear over
[a(0), a(1)], there is a kink in the equity value at a(0) such that lima↓a(0) e

′(a) 6= 0, which
is incompatible with an optimal default decision and the corresponding smooth-pasting
condition. Suppose now that a(0) = 0 so that the platform never defaults in equilibrium.
If e(a) is linear on [0, a(1)], there must be ajump ∈ [0, a(1)] such that the issuance policy
is to jump at ajump from any point in [0, a(1)] by Lemma 6. This implies that for any
a ∈ [0, a(1)]

e(a) =
[
e(ajump) + p(ajump)− ϕ

] a

ajump
− (p(ajump)− ϕ),

with p(ajump) constant over [0, a(1)] and p(ajump) > ϕ unless ϕ = 1. Hence, when a→ 0
limited liability is violated, except in the case ϕ = 1. This proves that the equity value is
strictly convex over [0, a(1)] unless ϕ = 1 and a = 0. In that case, the equilibrium equity
value may be linear for all a.

Second, Lemma 7 implies that there must exist a segment over which e(a) is linear. The
last step of the proof is to show that there exists ā such that the equity value is strictly
convex over [a, ā] and linear over [ā,∞). Characterization of the equilibrium issuance
policy as a targeted Markov policy then follows from Lemmas 5, 6, and 7. Let δ(a) be a
programmable interest rate rule that induces an MPE with strictly positive equity value,
and with issuance policy dG such that there exists a segment [a(2), a(3)] over which e is
strictly convex. We want to show that there exists an alternative rule δ̂(a) that induces
an MPE with issuance policy dĜ such that e(a) has the desired properties and the date-0
platform value is strictly higher.

We first construct an alternative policy and its induced equilibrium. Let a? be the
target value in the first linear region [a(1), a(2)] for equity in the equilibrium induced by the
original policy. Construct the alternative policy and the induced equilibrium as follows.
Set δ̂(a) = δ(a) for all a and dĜ(a, C) = dG(a, C) for a ≤ a? and dĜ(a, C) = A/a? − C
for a ≥ a?. Next, set the same liquidation policy â = a. Finally, conjecture that in the
equilibrium induced by the alternative policy, equity value ê(a) is linear and price p̂(a) is
constant for all a ∈ [a(1),∞).

Next, we argue that the issuance policy dĜ(a, C) and the liquidation threshold â are
equilibrium policies induced by the alternative rule δ̂(a). The subspace [0, a?] is absorbing
for the equilibrium induced by the original policy, because there are only downward jumps
to A and the platform jumps to a? from any a ∈ [a(1), a(2)]. Hence, the fact that dG(a, C)
for a ∈ [0, a(2)] is an equilibrium issuance policy induced by the original interest rate
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policy implies that dĜ(a, C) for a ∈ [0, a(2)] is an equilibrium issuance policy induced
by the alternative interest rate policy. The same argument applies to the liquidation
threshold â = a. This argument also implies that ê(a) = e(a) and p̂(a) = p(a) for all
a ∈ [0, a?]. We are thus left to show that dĜ(a, C) is an equilibrium issuance policy on the
rest of the state space, that is, for a ∈ [a(2),∞). This result follows from the observation
that ê(a) is linear over a ∈ [a(1),∞) and p̂(a) is constant. This implies that jumping to
any point in a ∈ [a(1),∞), including a∗, can be part of an equilibrium issuance policy, as
shown above.

Third, we show that p(a) = 1 for a ∈ [a(1), a(2)] in the equilibrium induced by the
original policy, and thus p̂(a) = 1 for all a ∈ [a(1),∞). Equity value is linear over [a(1), a(2)]
and the equilibrium issuance policy is to jump at a? ∈ [a(1), a(2)] when a ∈ [a(1), a(2)].
Hence, the price p(a) = p must be constant over [a(1), a(2)]. Since [0, a?] is an absorbing
subspace for the equilibrium induced by the original policy, it must be that p = 1. If not,
investors never enjoy any liquidity benefit for a ∈ [0, a?] and thus p(a) = e(a) = 0 for all
a ∈ [0, a?], which is a contradiction. To see this, suppose first that p < 1. By monotonicity
of p, we have p(a) < 1 for all a ∈ [0, a(2)], which implies that investors never enjoy the
liquidity benefit. Conversely, if p > 1 over [a(1), a(2)], we have p(a) = 1 for a unique
a ∈ [0, a(1)) because p(a) is strictly increasing over [0, a(1)), since e(a) is strictly convex
(see the proof of Lemma 7). With a smooth equilibrium issuance policy on [0, a(1)], this
state is not visited with positive probability and thus investors enjoy liquidity benefit with
zero probability, which again leads to a contradiction. Hence, p(a) = 1 for a ∈ [a(1), a(2)].
This implies p̂(a) = 1 for all a ∈ [a(1),∞) in the equilibrium induced by the alternative
policy.

Finally, we can show that the platform value at date 0 is higher under the alternative
policy than under the original policy. The platform’s value at date 0 is given by equation
(10), which we rewrite here for convenience.

E0 = E

[∫ τ

0

e−rt`(At, Ct)Ct1p(At,Ct)=1 + (µk − r)ϕCdt
∣∣∣∣∣A0, C0 = 0

]
. (A.104)

In any equilibrium, liquidity benefits are only enjoyed when a ∈ [a(1), a(2)] because p(a) 6=
1 for a 6∈ [a(1), a(2)]. Under the alternative policy, a? ∈ [a(1), a(2)] is reached immediately
at date 0 by design because the equilibrium issuance policy is to jump to a? when no
stablecoins are outstanding (a = ∞). In the equilibrium induced by the original policy,
however, the optimal choice at date 0 is some a?? > a(2) by design of the original policy.
Denote τf the first (stochastic) time the platform enters the region [a(1), a(2)] under the
original policy. We have

E0 = E[E−rτf ]Ê0 + E
[∫ ∞

0

e−rt(µk − r)ϕCdt
]
< E0, (A.105)

because no liquidity benefit is enjoyed before the platform reaches [a(1), a(2)]. The in-
equality follows from the fact that E[τf ] > 0 by design of the original policy and µk < r.

We have shown that the original policy is strictly dominated. Hence, in an equilibrium
induced by an optimal programmable interest rate rule, the issuance policy must belong
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to the class of TMPs.

This concludes the proof.

A.8 Proof of Lemma 4

We derive conditions that rule out deviations from a TMP in the target region [a,∞). The
conjectured issuance policy features a jump to a? from any point in the target region.
To verify that this policy to be ex post optimal, we consider “one-shot” deviations,
whereby the platform deviates and then follows the equilibrium policy from the value of
the demand ratio after the deviation.

Consider state (A,C-) such that a = A/C- ≥ a. The (conjectured) equilibrium policy
for the platform is to jump to C?(A), that is,

E(A,C-) = E(A,C?(A))− (1− ϕ)(C- − C?(A)). (A.106)

Now consider a jump deviation to some C ∈ (0, A/a) after which the platform stays at
C for dt and then reverts to the conjectured equilibrium policy. The value from this
deviation is

Ẽ(A,C-, C) = Ê(A,C)− (p̂(A,C)− ϕ)(C- − C) (A.107)

where Ê(A,C) is the payoff of the platform when it stays at C during dt (instead of
jumping to C?(A)) and p̂(A,C) is the price at (A,C) compatible with this behavior. By
definition of the conjectured equilibrium policy, we also have

E(A,C-) = E(A,C)− (1− ϕ)(C- − C) (A.108)

and the deviation payoff is

Ẽ(A,C-, C) = Ê(A,C)− (1− ϕ)(C- − C) + (1− p̂(A,C))(C- − C). (A.109)

Hence, the deviation is not profitable if, for all C ≤ A/a, we have

Ê(A,C) + (1− p̂(A,C))(C- − C) ≤ E(A,C). (A.110)

The value of stay inactive at C during time interval dt before reverting to the equilib-
rium policy is given by

Ê(A,C) = µkϕCdt− δ(a)ϕCdt+ (1− rdt)(1− λdt)E [E(A+ dA,C + δ(a)Cdt)]

+ (1− rdt)λdtE[E(SA,C)]. (A.111)

When a ∈ [a,∞), rewriting (A.106) the equilibrium equity value is given by

E(A,C) =
A

a?
e(a?) + (p(a?)− ϕ)(C?(A)− C) =

e(a?) + p(a?)− ϕ
a?

A− (p(a?)− ϕ)C.

(A.112)
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Hence, we get

E [E(A+ dA,C + δ(a)Cdt)] = E(A,C) + µ
e(a?) + p(a?)− ϕ

a?
Adt− (p(a?)− ϕ)δ(a)Cdt.

(A.113)
Plugging (A.113) into (A.111) and keeping only terms of order at least dt, we obtain

Ê(A,C) = E(A,C)− (r + λ)E(A,C)dt+ µ
[
e(a?) + p(a?)− ϕ

]
C?(A)dt

− p(a?)δ(a)Cdt+ µkϕCdt+ λE[E(SA,C)]dt. (A.114)

Note that a = A/C-, given that the interest rate policy δ(a) depends only on state
variables (A,C-), and not on (A,C), where C is the jump deviation we consider.

For the price in the deviation, we have

p̂(A,C) = δ(a)dt+ (1− rdt)E[pt+dt] = 1− (r − δ(a))dt.

The second equality obtains because pt+dt = 1 since we consider a one-shot deviation.
Hence, the deviation considered is not profitable if and only if

−(r+λ)E(A,C)+µ
[
e(a?)+1−ϕ

]
C?(A)−δ(a)C+µkϕC+λE[E(SA,C)] ≤ (r−δ(a))(C−C-).

Note that

(r + λ− µ)e(a?) = µkϕ+ µ(1− ϕ)− δ? + λe(Sa?)). (A.115)

Thus,

µE(A,C?(A)) =(r + λ) (E(A,C) + (1− ϕ)(C − C?(A)))

− µkϕC?(A)− µ(1− ϕ)C?(A) + δ?C?(A)− λE(SA,C?(A)). (A.116)

Substituting in and rewriting in terms of a = A/C− and a′ = A/C, we get[
(r + λ)(1− ϕ) + µkϕ

](
1− a′

a?

)
≤λE[e(Sa?)]

a′

a?
− λE[e(Sa′)]

+ δ(a)− δ? a
′

a?
+ (r − δ(a))

(
1− a′

a

)
. (A.117)

This concludes the proof.
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A.9 Proof of Proposition 5

Substituting δ(a) by r and δ? by r − `(a?(1)) in equation (A.117), we obtain[
(r + λ)(1− ϕ) + µkϕ

](
1− a′

a?

)
≤λE[e(Sa?)]

a′

a?
− λE[e(Sa′)]

+ r − (r − `(a?(1)))
a′

a?
. (A.118)

With ϕ = 1, we get e(a) = e(a?) a
a?

. Thus,

0 ≤(r − µk)C + (`(a?(1))− (r − µk))C?. (A.119)

This condition is satisfied provided that a fully collateralized stablecoin platform is
profitable (see Lemma 1). This concludes the proof.

A.10 Proof of Proposition 6

The first part of Proposition 6 follows from the argument in the text. If pt > ϕ, a
vault owner can get an infinite profit by issuing stablecoins backed by collateral, which
is incompatible with pt being an equilibrium price.

To obtain the second part of Proposition 6, we derive the dynamic equation for a vault
value. From equation (40), the vault value at date t per coin outstanding is ϕ − pt. As
mentioned in the main text, the vault value is independent of the amount issued, so we
can derive it as if the vault owner issued zero stablecoins. We thus have

ϕ− pt = −ϕstdt+ ϕµkdt+ (1− rdt)Et[(ϕ− pt+dt)]. (A.120)

In equation (A.120), the first (second) term corresponds to the collateral cost generated
by the platform’s fee policy (the return on collateral). Expanding the term of equation
(A.120) inside the expectation, we have

ϕ− pt = −ϕstdt+ ϕµkdt+ (1− rdt)Et
[
ϕ− pt − dt

dpt
dt

]
. (A.121)

Observe that dpt must be of order dt since there cannot be a jump in the price. Then,
keeping only terms of order dt in (A.121) and rearranging, we obtain equation (42). This
concludes the proof.

A.11 Proof of Proposition 7

The HJB equation for the price is

pt = `(at)1{pt = 1}dt+ 1{pt = 1}dt+ (1− rdt)E [pt+dt] . (A.122)
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Keeping only terms of order dt, we obtain

rpt = `(at)1{pt = 1}+ 1{pt = 1}+ Et
[
dpt
dt

]
pt. (A.123)

Combining equations (42) for ϕ = 1 and (A.123), we get

(st − δt)pt = `t1{pt = 1}+ µk − r. (A.124)

The maximization problem is then given by

Et = max
τ,s,δ

Et
[∫ τ

0

e−r(s−t)
(
`s1{pt = 1}+ µk − r

)
Csds

]
(A.125)

subject to ϕ − pt ≥ 0. Hence, the platform chooses the policy that maximizes the
present discounted value of seigniorage revenues net of collateral costs. This means that
the platform seeks to implement the same policy as in the full-commitment outcome of
Proposition 1. In particular, it seeks to implement supply rule (44) and interest rate rule
δ∗ = r − `(a?(1)).

We are left to shows how the platform can implement the desired policy when it does
not directly control issuance. From arbitrage condition (42), their supply function is a
step function given by

dGi =

{
+∞ if st < (µk − r)/pt + r − Et

[
dpt
dt

]
,

−Ci
t- if st > (µk − r)/pt + r − Et

[
dpt
dt

]
,

(A.126)

and it is indeterminate if st = (µk − r)/pt + r − Et [dpt/dt]. To satisfy equation (42) and
implement the price peg at the target a?(1), we must have s? = µk. To implement
C?(A, 1), the platform uses a fee schedule contingent on the amount of stablecoins,
whereby vault owners are induced to issue (buy back) stablecoins if C > C?(A, 1)
(C < C?(A, 1)). Such a schedule is given by (45). In this case, the only equilibrium
supply is Ct = C?(A, 1). In particular, we have s? − δ? = `(a?(1)) + µk − r. This last
equation combined with s? = µk implies that δ? = r− `(a?(1)). This concludes the proof.

58



Online Appendix

A Stablecoins in the Midst of the 2022 Crypto Crash

This appendix provides a short introduction to the variety of stablecoin pegging mech-
anisms in practice, with an emphasis on their performance during the crypto crunch of
May 2022. We review two custodial (USD Coin and Tether), a purely algorithmic (Terra),
an overcollateralized (DAI), and a partially collateralized (FRAX) stablecoin platform.
At the beginning of May 2022, these five stablecoins accounted for more than 80% of the
total stablecoin market.

USD Coin

USD Coin (USDC) is a custodial (fully collateralized) stablecoin managed by the Centre
consortium on behalf of the peer-to-peer payment technology Circle headquartered in
Boston, MA. USDC effectively acts as a narrow bank by backing its stablecoins exclusively
with cash (bank deposits or equivalents) and short-term Treasury securities and providing
full redemption. During the May 2022 crypto crash, USDC fared particularly well, as
can be seen in Figure 4: It maintained its peg, and the quantity of USDC outstanding
increased during that time period. Given its conservative reserves management strategy,
USDC presumably benefited from a “flight to safety” because investors were fleeing from
fast depreciating cryptocurrencies and other stablecoins.

Tether

Tether (USDT) is another custodial stablecoin that is a native of the Ethereum ledger and
issued by Tether Limited company, which is domiciled in Hong Kong under the umbrella
of Tether Holdings Limited in the British Virgin Islands. Although Tether claims to be
“fully backed by US dollar reserves,” its definition of reserves appear to be less restrictive
than the one applied by USDC, and also includes privately issued commercial paper and
corporate bonds but also volatile cryptocurrencies.39 Griffin and Shams (2020) report
suspicious transaction patterns on the blockchain and suggest that the platform has been
using unbacked Tether creation to purchase large quantities of Bitcoin to support its
price.

Figure 4 displays the time-series price of Tether and quantities outstanding. We can
observe a sharp reduction in supply around the crypto crash of May 2022, along with a
temporary depegging. Tether nonetheless re-anchored within a couple of days and proved
able to absorb the $5B of redemption it faced.

39Since 2021 and a $41MM fine by the Commodity Futures Trading Commission for misleading claims
that it was fully backed by the US dollar, Tether Holdings Limited regularly reports a reserves audit
from Cayman-based auditing companies.
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Terra

Terra (UST) is a prime example of a fully algorithmic (uncollateralized) stablecoin. As
described in the main text, algorithmic stablecoins such as Terra are uncollateralized
and rely exclusively on quantity adjustments through smart contracts that specify rules
for stablecoin issuances and buybacks. In the case of Terra, these are ruled through an
external module that allows any investor to exchange 1 unit of stablecoin (Terra) for
1 dollar’s worth of governance token (Luna) and vice versa. Between its introduction
in early 2020 and the crypto crash of May 2022, Terra was one of the fastest-growing
stablecoin platforms. By May 2022, the quantity of stablecoin Terra outstanding was
close to $20B, while the governance token Luna had a peak market capitalization of
$40B.

As can be seen in Figure 5, the platform completely collapsed between May 7 and May
12, 2022. In the right panel of Figure 5, we see how the platform attempted but failed
to defend the peg. On May 12, the platform burnt around 8B of Terra, partly through
the issuance of additional Luna at an exponential pace. As can be seen in the left panel,
this massive issuance of Luna led to the collapse of its price to zero. Simultaneously, the
Terra Foundation liquidated around $3B of Bitcoin it had held in reserves. Given the size
of the shock, these adjustments were not sufficient to re-anchor the peg, and the value of
Terra eventually also fell very close to zero.

DAI

DAI is a fully decentralized, fully collateralized stablecoin platform. Because of its
decentralized nature, DAI is slightly more complex than other stablecoins and requires a
longer description. With DAI, every user is able to deposit some Ethereum-based crypto-
asset as collateral in a smart contract called a collateralized debt position (CDP). The
user can then issue and sell DAI stablecoin tokens against this collateral up to a certain
collateralization threshold, while effectively retaining an equity tranche in the CDP. In
doing so, CDP users acquire a leveraged position in the collateral asset. Initially, it
was only possible to use Ethereum as a collateral asset, but the platform migrated to a
multiple collateral system at the end of 2019. Since then, the custodial stablecoin USD
Coin (see above) has been used extensively as collateral for DAI. To close the CDP and
retrieve the locked collateral, the owner has to repurchase and burn all previously issued
DAI from the secondary market.

The platform also issues its own governance token, Maker (MKR). Holding Maker
allows the user to vote on key policies of the platform and effectively confers the right to
future seigniorage revenues. The platform is able to generate revenues for Maker holders
by collecting “stability” fees from CDP owners. These fees accrue to a “buffer” fund up
to a certain limit and are then distributed to Maker holders as dividends.

The pegging mechanism in DAI is tied to its collateralization. When the collateral in
a CDP falls below the required threshold, the position is automatically liquidated and
collateral assets are sold in an auction to burn the corresponding DAI. When auction
proceeds are insufficient to repurchase all DAI issued by the CDP, new Makers are
automatically issued to cover the shortfall. As shown in Figure 5, we can see that this
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mechanism was at play during the May 2022 crypto market crash. The platform then
liquidated for $3B worth of collateral in CDPs in order to burn more than $2B worth of
DAI. This process was nonetheless done in an orderly fashion, and parity was maintained
throughout. As can be seen from the right-most panel, no additional Maker was required
to be issued.

FRAX

Frax (FRX) is a partially collateralized platform that can be thought of as a hybrid
between Terra and DAI. As with Terra, users can exchange the stablecoin FRAX for the
platform’s governance token Frax Shares (FRS) and the converse. Because the platform is
partly collateralized, the swap module requires that users bring both FRS and collateral
in a given proportion. For instance, if the collateralization ratio is 90% and Frax is
trading for more than 1 USD, users can exchange 90 USD Coins and $10 worth of FRS
in exchange for 100 Frax and sell them for a profit. The collateralization ratio in Frax
is automatically reduced in expansion and increased in contraction, so that with a large
surge in issuance, Frax would converge to a fully algorithmic platform like Terra.

In early May 2022, Frax had a collateralization rate of 86.75%. As can be seen in Figure
5, the platform managed to burn around a $1B without breaking its peg.
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Figure 4: Custodial Stablecoins Time Series. This figure illustrates the daily time series
of market capitalization and price for Tether (USDT, first row) and USD Coin (USDC, second
row). The first portion of each graph spans the period from January 2021 to April 30, 2022,
while the gray shaded area zooms in on May 2022. Pink diamond markers in Panels A illustrate
the total USD value of reserves backing the stablecoin, as certified through external audits
made available on the platforms’ respective web pages. Data sources: Market capitalization
and prices are all retrieved through the CoinGecko API.
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Figure 6: Full-commitment solution with limited liability. The function ϕ?(λ) represents the
optimal collateralization rate ϕ? for different levels of large demand shock intensity λ. The
function f?(λ) represents the total platform value (e(a?)+p(a?)−ϕ?)/a?) at the optimal target
demand ratio a? and either optimal collateralization rate ϕ = ϕ? (blue) or without collateral
ϕ = 0 (black) for different levels of large demand shock intensity λ. The set of parameters is
given by r = 0.06, µ = 0.05, µk = 0.055, σ = 0.1, `(A,C) = r exp(−C/A), ξ = 6. The numerical
solution algorithm is described in the Internet Appendix.

B Partially Collateralized Platforms: Numerical So-

lution

Partially collateralized platform, ϕ ∈ (0, 1), do not have analytical solutions. In Figure 6,
we solve numerically for the optimal collateralization rule ϕ?(λ) for different demand
shock intensities λ. As λ goes up, the likelihood that limited liability constraint (15)
binds increases together with the probability of a large negative shock. Collateral thus
becomes more useful because a higher collateralization ratio ϕ relaxes constraint (15):
The platform can finance purchases from collateral holdings to a greater extent when
ϕ is high. In line with Proposition 1, the right panel of Figure 6 shows that collateral
is necessary for a stablecoin platform to exist when negative shocks are likely enough
(high λ). With full collateralization (ϕ = 1), a platform always exists for all values of
λ, as shown above. In practice, there exists a large heterogeneity of platform designs,
ranging from uncollateralized ones such as Terra-Luna to partially collateralized ones such
as FRAX to fully collateralized ones such as DAI. Our model suggests that an optimal
collateralization ratio trades off stability with platform profits.

In this appendix, we describe the algorithm to solve the full-commitment problem with
collateral. We solve for f ?(λ, ϕ, a?) ≡ (e? + p?)/a? for {λ, ϕ, a?} ∈ [0, 1]× [0, 1]× [1, 4] on
a 40× 20× 20 grid following the pseudo-algorithm below. We note that for the partially
collateralized case, a > 0 and there is a reverting boundary at a. Indeed, if the platform
liquidates, debt holders receive the collateral and thus p(a) = ϕ. However, if p(a) = ϕ,
then the net cost of repurchasing stablecoins to equity holders is 0 and not doing these
repurchases would be a net loss to the date-0 equity value.

Because the ODE is stiff otherwise, we constrain g(a) to be greater or equal to -10.
We use the Matlab function ode23. Start with ad0 = 0, au0 = 1, a0 = 1, a?0 = 1.5,
E[p(Sa)]0 = 1, i = 0, j = 0, k = 0.
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1. Define ai = (adi + aui )/2.

2. Solve for the second order ODE for p(a) on [ai, ai] given in Lemma 2 with p(ai) = ϕ
and p′(ai) = 1e− 6.

3. If p(ai) < 1, set aui+1 = ai and adi+1 = adi . Otherwise, aui+1 = aui and adi+1 = ai.

4. If aui+1− adi+1 < 1e− 6, continue to the next step; otherwise, set i = i+ 1 and go to
step 1.

5. Solve for E[p(Sa)]j+1 given the new solution for p(a).

6. If ||E[p(Sa)]j+1 − E[p(Sa)]j|| < 1e − 5, continue to the next step; otherwise, set
j = j + 1 and go to step 1.

7. Solve for ak+1 such that e?(ai, ak+1, a
?) = 0.

8. If |e?(ai, ak+1, a
?)− e?(ai, ak, a?)| < 1e− 4, end; otherwise, set k = k + 1 and go to

step 1.
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