
A Solution Method for Continuous-Time Models∗

Adrien d’Avernas†, Damon Petersen‡, and Quentin Vandeweyer‡

July 25, 2023

Abstract

We propose an algorithm capable of solving a general class of continuous-time

asset pricing models with heterogeneous agent models, in a fast and standard-

ized way. We rely on a finite difference algorithm and the Stern-Brocot Tree

decomposition of Bonnans, Ottenwaelter, and Zidani (2004) for fast and stable

convergence in settings with up to two endogenous and stochastic state vari-

ables. We provide an open source software package, PyMacroFin, that includes

an object-oriented interface for model definition and solution for any model in

this general class.

∗Quentin Vandeweyer thanks the Alfred P. Sloan Foundation, the CME Group Foundation, Fidelity
Management & Research, and the MFM initiative for the support when working on this work as part of
his PhD dissertation.

†Stockholm School of Economics
‡University of Chicago Booth School of Business

1

1 Introduction

The financial crisis of 2008 generated a resurgence of interest in the interaction between

macroeconomic and financial variables. In particular, there is a growing demand for models

able to capture non-linear dynamics and time-varying risk premia. An important part of

this research effort has been undertaken by introducing financial frictions and heterogene-

ity in classical consumption-based asset pricing models. For instance, seminal articles by

Brunnermeier and Sannikov (2014) and He and Krishnamurthy (2013) building on Basak

and Cuoco (1998) developed a convenient framework to think about general equilibrium

consequences of financial frictions. A second wave of articles looks at more complex dy-

namics involving more than one state variable to generate movements in the aggregate

stochastic discount factor such as Drechsler, Savov, and Schnabl (2017), Di Tella (2017)

and Di Tella and Kurlat (2016).

Although this strand of research is showing great potential in incorporating important

macro-financial insights into asset pricing models, solving these models is a nontrivial

problem. Most heterogeneous agent asset pricing models share a similar mathematical

structure. They consist of a Hamilton-Jacobi-Bellman (HJB) equation for each agent cou-

pled with a system of algebraic equations derived from the market clearing conditions,

occasionally binding constraints, and financial frictions. Because we are interested in the

recursive equilibrium, HJB equations are time-independent, and hence, nonlinear degener-

ated elliptic PDEs. Solving such a system of PDEs is, a priori, a tedious problem because

it might be numerically unstable. Approximation errors tend to amplify to create explosive

dynamics. Recent work on algorithms for solving continuous-time models has included a

shift toward machine learning techniques to solve high-dimensional and highly nonlinear

models. Sauzet (2022) uses neural networks as function approximators to solve continuous-

time models in high-dimensional settings. Duarte (2022) poses nonlinear partial differential

equations (PDEs) associated with continuous-time model solution as supervised learning

problems. Gopalakrishna (2022) solves continuous-time equilibrium models using neural

networks with economic information encoded as regularizers. In this paper, we propose

an algorithm able to solve a very general class of models in an efficient and standardized

way without machine learning. We overcome the stated issues by combining insights from

different parts of the numerical methods literature.

First, as is customary in the physics literature, we add a fictitious time dimension (tran-

2

sient) to solve the system over time until convergence to equilibrium to bypass numerical

difficulties created by nonlinearity. More precisely, we follow Brunnermeier and Sannikov

(2016) and solve the algebraic part of the system statically while solving for the value

functions of the different agents dynamically backward in time. The static system is solved

in between every time iteration using a simple Newton-Raphson method with the un-

constrained solution as an initial guess. Solving for the value function backward in time

requires careful attention as the HJB equation inherits some of the inherent instability of

the well-known advection equation. Informally, one needs to be particularly cautious in

approximating the derivatives to preserve monotonicity of the elliptic operator. With one

state variable (or several state variables with uncorrelated laws of motion), we can simply

apply a traditional upwind scheme by taking the finite difference approximation according

to the sign of the drift of the law of motion of the corresponding state variable. When we

have at least two correlated state variables, the problem is more complex as the monotone

direction may be inside the state space but not necessarily a primary vector on the discrete

grid. In this case, we use the method developed by Bonnans, Ottenwaelter, and Zidani

(2004) consisting of using an available degree of freedom in the interpolation problem to

rotate the state space with minimized computational time. Last, we treat the nonlinearities

arising from the regulated part of the HJB. We follow the suggestion of Candler (1999) to

treat the problem as if it were linear and relax the nonlinear part with each iteration. We

then solve the system in the time dimension using a fully implicit backward Euler algo-

rithm until convergence. The contribution of this paper to the literature is to demonstrate

that, by combining these different insights, we can solve large class of continuous-time

macro-finance models. The project is close to Hansen, Tourre, and Khorrami (2019) which

also provides a finite difference method to solve for a nested macro-finance model. The

algorithm presented in this paper diverges mainly by showing how to deal with correlated

Brownian motions by using the algorithm of Bonnans, Ottenwaelter, and Zidani (2004).

2 The General Portfolio Problem

In this section, we recall the structure of Merton’s (1973) portfolio problem in continuous

time, as it is the basis of the class of models we would like to solve, and to define the

Hamilton-Jacobi-Bellman (HJB) equation that is the focus of the finite difference scheme

of Section 5. This problem can be written in the following generic form. Agents have a

3

lifetime utility function defined as:

Ut = Et

[∫ ∞

t
f(ct, Ut)du

]
,

where ft is a homothetic utility function. We assume that it follows an Epstein-Zin recursive

formulation:

f(ct, Ut) =

(
1− γ

1− 1/ζ

)
Ut

[ct

([1− γ]Ut)
1/(1−γ)

]1−1/ζ

− ρ

 ,

where ρ, γ, and ζ are the parameters for time discounting, risk aversion, and intertemporal

elasticity of substitution, respectively. Agents maximize Ut under the law of motion of

their net worth nt:

dnt
nt

=
(
rt + wt(µ

r,k
t − rt)− ct

)
dt+ wtσ

r,k
t dZt,

where rt is the risk free-rate, ct = ct/nt the consumption to wealth ratio, and wt the

portfolio weight on a risky asset. This risky asset has dividend flows that follows:

drkt = µr,kt dt+ σr,kt dZt,

where Zt = {Zt ∈ Rd;Ft, t ≥ 0} is a standard adapted Brownian motion process. Finally,

the HJB of the problem is given by:

0 = max
wt,ct

f(ct, Ut) + Et (dUt) .

Thanks to the homotheticity of the utility function, we can guess and verify the value

function as

U(ξt, nt) =
(ξtnt)

1−γ

1− γ
, (1)

where ξt is a wealth multiplier variable that tracks changes in the set of investment oppor-

tunities driven by changes in the state variables. We postulate its law of motion as

dξt
ξt

= µξtdt+ σξt dZt.

4

Applying Ito’s lemma to the HJB equation gives

Et (dU(ξt, nt)) = µξt ξUξ(ξt, nt) + µnt ntUn(ξt, nt)

+
(
σξt ξt

)2 1
2
Uξξ(ξt, nt) +

(
σnt nt

)2 1
2
Unn(ξt, nt) + σξt ξtσ

n
t ntUξn(ξt, nt),

where the subscript on a function represents the partial derivative with respect to that

variable such that

Fx(x, y) =
∂F (x, y)

∂x
.

Note that, in a recursive equilibrium, state-variables characterize the whole system such

that Ut only moves through time as a deterministic function of other variables, and hence,

U̇t = 0. Using (20), we can rewrite the HJB equation as

0 =max
ct,wt

{
1

1− 1/ζ

((
ct
ξt

)1−1/ζ

− ρ

)
+ µξt −

γ

2

(
σξt
)2

+ rt + wt

(
µr,kt − rt

)
− ct

− γ

2
w2
t

(
σr,kt

)2
+ (1− γ)wtσ

r,k
t σξt

}
.

(2)

The optimality conditions for ct and wt are given by

ct = ξ1−ζ
t , (3)

wt =
µr,kt − rt + (1− γ)σr,kt σξt

γ
(
σr,kt

)2 . (4)

We can then plug these conditions into the HJB to find a differential equation in ξt. From

here, models diverge by assuming different types of agents with heterogeneous constraints,

number of available assets, technology, financial frictions, and stochastic processes. These

differences will eventually determine a set of state-variable(s) affecting the set of investment

opportunities in which a recursive equilibrium is determined. Yet, the skeleton of the model

remains similar in consisting in a series of algebraic equations, imposing market clearing

conditions and constraints, and an HJB equation for each agent.

5

3 Relaxation of Nonlinearity

We follow the approach of Brunnermeier and Sannikov (2016) in solving the algebraic

part of the system as a side problem within each iteration of the differential problem. In

a recursive equilibrium, we can write ξt = ξ(Xt) as all variables can be expressed as a

function of a set of the state variables vector Xt following the law of motion:

dXt

Xt
= µX

t dt+ σX
t dZt,

where µX
t is the vector of individual drifts and σX

t a covariance matrix. We can then apply

Ito’s lemma to ξ(Xt) to find:

µξt ξt = (∇Xξt)
⊺µX

t +
1

2
Tr
[
σX
t

⊺
(HXξt)σ

X
t

]
, (5)

σξt ξt = (∇Xξt)
⊺σX

t ,

where ∇Xξt is the gradient of ξt with respect to Xt and HXξt is the Hessian matrix of

ξt with respect to Xt. By substituting these expressions for µξt and σξt into (2), one can

readily see that the HJB is a second-order nonlinear partial differential equation in Xt.

Unfortunately, because of its nonlinearity, there is no theorem that can be applied to

guarantee the stability and convergence of a numerical scheme for this problem. Nonethe-

less, by treating the equation as if it was linear, it is possible to create a scheme that is

closer to stability and which works in practice. To make this point,1 assume that the set

of state variables is a scalar Xt = {xt} and use equations (2), (3), and (4) to isolate µξt :

µξt =− 1

1− 1/ζ
(ct − ρ) +

γ

2

(
σξt
)2 − rt + ct −

γ

2
w2
t

(
σr,kt

)2 − (1− γ)wt

(
σr,kt

)2
σξt . (6)

In our general portfolio problem, ξt is raised to the power 1−ζ in the first order condition

(3) which makes the HJB equation (2) nonlinear once the optimal controls have been taken

into account. Our strategy consists in solving the Ito process in equation (5), rather than

directly the HJB, as a linear function by treating µξt as a parameter whose value is computed

from the previous iteration. We can use this equation to compute a consistent value for µξt

1The exact same procedure can be used for any number of state variables but making this assumption
facilitates exposition at this stage.

6

to plug in (5).2 This procedure is commonly referred to as a relaxation method to reflect

the fact that the nonlinearity is introduced to the problem only in small increments. The

next sections will provide a concrete application of this principle.

4 A Finite-Difference Approach

In this section, we provide a short introduction to finite difference schemes to solve systems

of PDEs. In particular, we illustrate through the example of the advection equation that

the direction of the finite difference approximation is key to the convergence of the scheme.

The section is based on Candler (1999) and Tourin (2011).

4.1 Introduction to the Finite-Difference Scheme

Designing a finite difference scheme starts from defining a series of points (a grid) in the

dimension(s) of the state variable(s). For simplicity, we assume a time t and state variable

x on a grid equispaced in both time and state with a distance of respectively ∆t and

∆x between two points. Grid nodes are then referred by numbering them along the two

dimensions: {t1, t2, . . . , tT } and {x1, x2, . . . , xW }. A function V (t, x) evaluated at a point

(n, i) on the grid is then:

V n
i = V (tn, xi) = V (n∆t, i∆x)

We recall the definition of a partial derivative with respect to the state variable x as:

∂V (t, x)

∂x
= lim

∆x→0

V (t, x+∆x)− V (t, x)

∆x
.

A finite difference approximation consists in the evaluation of the previous expression for a

finite distance ∆x. As our grid features various points, one could potentially use different

nodes to compute the approximation. In theory, a finite difference approximation can be

done through any linear combinations of the nodes in the grid. The most commonly used

2In a later example, we will derive µX
t and σX

t using the definition of the state(s) variable(s).

7

local approximations involving only two neighboring points are:

∂V (tn, xi)

∂x
=
V n
i+1 − V n

i−1

2∆x
+O

(
∆x2

)
Central Approximation

∂V (tn, xi)

∂x
=
V n
i+1 − V n

i

∆x
+O (∆x) Forward Approximation

∂V (tn, xi)

∂x
=
V n
i − V n

i−1

∆x
+O (∆x) Backward Approximation.

The order of the approximation error can be computed by taking a Taylor expansion.

Approximations that are the most centered and feature the most points will have a higher

order of error. This is reflected in the central approximation having an error of order 2

while the forward and backward ones have only errors of order 1. At this stage, one could

be tempted to conclude that the central approximation dominates the other two as it is

more accurate when using only two nodes. Yet, as will be clear in the next section, it is

not the case as we also care about convergence properties of the numerical scheme.

4.2 Instability in the Advection Equation

In this subsection, we introduce the advection (or wave) equation which features the same

stiffness characteristics as the HJB equation we are concerned with. This example is often

used in introductory fluid dynamics classes. Let’s consider the advection equation:

Vt + aVx = 0. (7)

This equation has a well-known exact solution as V (t, x) = V (0, x − at), given an initial

condition V (0, x). We solve this problem by applying the three FD approximations from

the last section with respect to the state variable and forward in time.

V n+1
i − V n

i

∆t
= −a

V n
i+1 − V n

i−1

2∆x
Central

V n+1
i − V n

i

∆t
= −a

V n
i+1 − V n

i

∆x
Forward

V n+1
i − V n

i

∆t
= −a

V n
i − V n

i−1

∆x
Backward

8

We can express these three equations as an explicit function of V n+1
i as:

V n+1
i = V n

i − a∆t
V n
i+1 − V n

i−1

2∆x
Central (8)

V n+1
i = V n

i − a∆t
V n
i+1 − V n

i

∆x
Forward (9)

V n+1
i = V n

i − a∆t
V n
i − V n

i−1

∆x
Backward. (10)

We can then compute the value for V across the grid iteratively through time starting

from the given initial condition V (t = 0) = V0. Figure (1) provides the results (using

algorithm 1 below) of this procedure for the three given approximations and parameters:

∆t = 0.2; a = 0.5; dx = 0.17 on a grid from 0 to 10 and starting from an initial state where

V0 = 2 for x ∈ [0, 5] and V0 = 1 for x ∈ [5, 10].

Algorithm 1: Explicit Euler

1. Define a finite grid over the state variable x, set V (t = 0) = V0 for any nodes on the

grid.

2. Iterate through time by increment ∆t.

3. Iterate through each point in the state space from i=1 to i=I and use one either (8),

(9), and (10) to solve for V n
i given V n−1

i , V n−1
i+1 and V n−1

i−1 .

4. Go back to Step 2 until t=T.

The last panel of Figure 1 displays the analytical solution of the advection equation at

different time steps. As the coefficient a is negative, the initial condition is expanded from

the left to the right in the analytical solution. This process occurs through time, until

reaching a steady state position where V = 2 for the whole state space. The first and

second panels show that both the central and the forward difference approximation do

not provide satisfactory results as the scheme exhibits large oscillations reflecting growing

approximation errors. These errors are increasing in the number of time iterations, which

will therefore never converge to its steady-state value. One can see that the backward

difference approximation is more satisfying in matching the analytical solution and in

converging to the analytical steady-state solution.

9

0 2 4 6 8 10
1

1.5

2

2.5
Central Difference Approximation

0 2 4 6 8 10
-5000

-4000

-3000

-2000

-1000

0

1000

2000

3000

4000
Forward Difference Approximation

0 2 4 6 8 10
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2
Backward Difference Approximation

0 2 4 6 8 10
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2
Analytic Solution

Figure 1: Solving the advection equation (7) with different approximations. The first three panels display
the result of solving for the movement of the wave equation across time using three different approximations
to the space derivative. The last panel shows the exact analytical solution of the problem moving from the
left to the right. Each line of a different color is the solution (exact or approximated) at a given point in
time.

10

This result is well-known in the numerical literature (see Candler, 1999). When a is

positive, the backward approximation has the property of being taken to the left of the

wave being propagated to the right. Such a scheme is called upwinding or upstreaming to

reflect that, by taking the derivative left from the wave, we only take into consideration

information coming from upstream of the flow. In the case of advection equation with a > 0

this is natural as the wave is transported from left to right and the information on its right

is, hence, irrelevant for the wave’s evolution. Crucially, the wave equation is what is called

in physics a pure conservation, meaning that the energy (the solution) is purely transported

and does not diffuse into the domain. Providing a numerical approximation of a pure

conservation equation is difficult because any approximation has a diffusive nature. One

has, therefore, to be careful about how this artificial diffusion (also called artificial viscosity)

is introduced to ensure that it is not amplified through time. The key concept in this regard

is that the approximation preserves the monotonicity of the solution through each time

iteration and does not add a new local maximum. One can see that this condition is indeed

broken in the central and forward approximations as taking information from downstream

breaks the conservation of the solution. This spurious diffusion going in the wrong direction

is particularly problematic as it amplifies at each iteration and prevents the solution from

converging to its steady-state. On the other hand, the backward approximation, even if it

introduces more diffusion in comparison to the central approximation, is doing so in the

right direction and, therefore, preserves the monotonicity of the scheme provided that the

Courant-Friedrichs-Lewy condition is satisfied
∣∣a∆t
∆ω

∣∣ ≤ 1.3

4.3 An Implicit Scheme

In this subsection we introduce implicit (backward) schemes that are more stable for the

PDE in question than explicit (forward) schemes. Note that in the last subsection, we

approximated our advection equation (7) forward in time but we could also have done

3We refer to Candler (1999) for a the rigorous Von Neuman analysis of the dynamics.

11

backward as:

V n
i − V n−1

i

∆t
= −a

V n
i+1 − V n

i−1

2∆x
, Central,

V n
i − V n−1

i

∆t
= −a

V n
i+1 − V n

i

∆x
, Forward

V n
i − V n−1

i

∆t
= −a

V n
i − V n

i−1

∆x
, Backward.

In this case, we cannot use algorithm 1 as described in the previous section because V n
i

is now an implicit function which requires determining jointly the value of its neighboring

points. One therefore needs to solve the following system:

Vn = A−1Vn−1 (11)

where Vn is a vector of V n
i and A is a IxI matrix given by:

ACE =

1 a∆t

2∆x · ·
−a∆t
2∆x 1 a∆t

2∆x ·

· . . .
. . .

. . .

· · −a∆t
2∆x 1

AFW =

[
1− a∆t

∆x

]
a∆t
∆x · ·

·
[
1− a∆t

∆x

]
a∆t
∆x ·

· . . .
. . .

. . .

· · ·
[
1− a∆t

∆x

]

ABW =

[
1 + a∆t

∆x

]
· · ·

−a∆t
∆x

[
1 + a∆t

∆x

]
· ·

· . . .
. . .

. . .

· · −a∆t
∆x

[
1 + a∆t

∆x

]

where ACE, AFW, and ABW are the matrices corresponding to central, forward, and

12

backward approximations, respectively.

Algorithm 1 is therefore amended in replacing Step 3 with solving (11). This requires

the inversion of the bi-diagonal or tri-diagonal matrix A. This step is more computa-

tionally involved than solving explicitly for every node as in algorithm 1 but can still

be done very efficiently by exploiting the sparsity of the matrix using, for instance, a

standard Thomas algorithm.4 In the case of the linear advection problem, these implicit

schemes can be shown to be unconditionally stable and hence, do not need to respect the

Courant–Friedrichs–Lewy condition. Implicit schemes are in general more diffusive in na-

ture as values of the solution at each node impact each other. For this reason, it is not

frequently used in the numerical fluid dynamics literature to approximate the advection (a

pure conservation) equation as they introduce unnecessary approximation error. Our case

is different as we are interested in finding a recursive equilibrium that is time independent.

We are therefore interested in adding as much diffusion as possible in order to take larger

time steps to minimize computational time.

5 A Monotonic Scheme for the Portfolio Problem

In this section, we provide an implicit upwinding finite-difference scheme that can be

applied to the HJB of the general portfolio problem. We tackle in turn the one-dimensional

and two-dimensional cases.

5.1 Finite-Difference Scheme in One Dimension

In the unidimensional case, we are interested in solving an elliptic ordinary differential

equation as (5) that does not depend on time. Though, because of the inherent instability

of the non-linear HJB, it is easier to add a false transcient (time) dimension and solve it

until convergence to a steady state. In doing so, we build our numerical scheme to be as

diffusive as possible to be able to take large time steps and minimize the computational

time needed for convergence. Note that, in this regard, we are interested in the accuracy

of the approximation at a particular step in time only with respect to its impact on the

4The Thomas algorithm (named after Llewellyn Thomas), is an efficient Gaussian elimination technique
that can be used to invert tridiagonal matrices. See, for example, Niyogi (2006)

13

convergence property of the scheme. Moreover, we solve the system backward in time

rather than forward, as this will allow us not to define exogenous boundary conditions

when the system admits a globally absorbing steady-state strictly inside the state space.

We will come back to this point in actual examples. At the moment, let us consider the

following linear5 parabolic (time-dependent) partial differential equation:

r(x)F (x, t) = u(x) + µ(x)
∂F (x, t)

∂x
+
σ(x)2

2

∂2F (x, t)

∂x∂x
+
∂F (x, t)

∂t
. (12)

We recall our definition of the grid from the previous section along the time t and state

variable x on a grid equispaced in both time and state with respectively ∆t and ∆x distance

between two points. Grid nodes are then referred to by numbering them ordinally along the

two dimensions: t ∈ {t1, t2, . . . , tn, . . . , tN} and {x1, x2, . . . , xi, . . . , xI}. A function F (t, x)

evaluated at a point (n, i) on the grid is then noted as:

Fn
i = F (tn, xi) = F (n∆t, i∆x).

A finite difference approximation consists in the evaluation of the previous expression

for a finite distance of ∆x. As our grid features various points, one could potentially use

different nodes to compute the approximation. In theory, a finite-difference approximation

can be done through any linear combinations of the nodes in the grid. The most commonly

used local approximations involving only two neighboring points are the forward, backward,

and central approximations of the previous section.

As we have illustrated previously, a wave equation with a positive directional parame-

ter (moving to the right) requires a backward approximation while a negative directional

parameter (moving to the left) requires a forward approximation. By allowing the direc-

tional parameter to vary according to its position between negative and positive values,

we change the direction approximation dynamically. This is what the following upwinding

approximation does:

∂F (t, x)

∂x
≈ µ+i

Fn
i+1 − Fn

i

∆x
+ µ−i

Fn
i − Fn

i−1

∆x
,

5This equation would correspond to equation 5. As explained at the end of Section 2, we solve our
non-linear equation as if it was linear and introduce the non-linearity slowly through time iterations.

14

where

µ+i =

{
µi if µi > 0

0 else,
µ−i =

{
µi if µi < 0

0 else.

This approximation preserves monotonicity of the solution through each time iteration;

that is, it does not add a new local maximum.

We use an implicit upwind finite-difference scheme. An implicit method, while more

complex to program and requiring more computational effort in each solution step, is more

stable and allows for large time-step sizes. Explicit methods calculate the state of a system

at a later time from the state of the system at the current time, while implicit methods

find a solution by solving an equation involving both the current state of the system and

the later one. Mathematically, if Fn is the current value function vector on the discrete

equispaced grid I and Fn+1 is the state at the later time, then, for an explicit method, we

solve

Fn+1 = T (Fn)

while, for an implicit method, we solve

T (Fn+1,Fn) = 0

to find Fn+1. The upwind finite-difference scheme approximation of equation (12) for time

t ∈ T on the discrete equispaced grid i ∈ I is given by

riF
t
i = ui + µ+i

F t
i+1 − F t

i

∆x
+ µ−i

F t
i − F t

i−1

∆x
+
σ2i
2

(
F t
i+1 − 2F t

i + F t
i−1

∆x2

)
+
F t+1
i − F t

i

∆t
.

We are looking for an implicit system of equations given our parameters and guess from the

previous time iteration but solving backward in time, setting Ft ≡ Fn+1 and Ft+1 ≡ Fn.

15

We can therefore write our numerical scheme in the fixed-point form as:[
ri +

1

∆t
+
µ+i − µ−i

∆x
+

σ2i
∆x2

]
︸ ︷︷ ︸

Mi

Fn+1
i =

[
µ+i
∆x

+
σ2i

2∆x2

]
︸ ︷︷ ︸

−Ui

Fn+1
i+1 −

[
µ−i
∆x

− σ2i
2∆x2

]
︸ ︷︷ ︸

Di

Fn+1
i−1

+ ui +
Fn
i

∆t
.

Because Ui > 0, Mi > 0, and Di < 0 for all i, the scheme is unconditionally monotone in

Fn+1
i−1 , F

n
i , and F

n+1
i+1 . Note that the centered second derivative term in front of the volatility,

since always positive, is not an issue for the monotonicity of the scheme. Theoretically,

for a linear problem, we could, therefore, take an arbitrarily large time step in solving the

equation. In practice, the non-linearity of the scheme restricts the size of the time step we

can take. There is no theorem available to determine this limit, and it can only be found

through by running simulations.

Going backward in time, we solve for Fn+1 as a function of Fn. In order to do so, we

can now write our parabolic partial differential equation in matrix form as:

Fn+1 = A−1

[
u+

Fn

∆t

]
where the matrix A is given by:

A =

M1 U1 · · ·
D2 M2 U2 · ·

· . . .
. . .

. . . ·
· · DI−1 MI−1 UI−1

· · · DI MI

and

Fn =

Fn
1
...

Fn
I

 , u =

u1
...

uD

 .

Note that by writing the equation in this form we are not assuming any boundary

16

condition on the edge of the grid for the value function F (t, x) in terms of the state variable

x. We assume that we do not need to do so because the value function will drift right at

the left boundary and left at the right boundary. This is equivalent to assuming that there

exists an interior absorbing stochastic steady-state. In most macro-finance applications,

the two edges of the state grid are degenerating points where the volatility σi goes to 0.

Therefore, we can solve numerically for equation (12) with the following algorithm:

Algorithm 1 Implicit Euler

1. Define a finite grid over the state variable x and set an initial guess for F0.

2. Invert the sparse matrix A using Thomas algorithm to solve for Fn+1 in (??).

3. Iterate on 2 until convergence.

5.2 Finite-Difference Scheme in Two Dimensions

Several models in macro-finance feature two state variables (i.e., Silva, 2016; Di Tella and

Kurlat, 2016; Drechsler, Savov, and Schnabl, 2017). In this case, the state-space becomes

a plane and the grid is defined on two coordinates. We write the generalization of (12) in

multiple dimensions as:

r(X)F (X, t) = u(x) +

m∑
i=1

µi(X)
∂F (X, t)

∂xi
+

m∑
i=1

m∑
j=1

σi(X)σj(X)

2

∂2F (X, t)

∂xi∂xj
+
∂F (X, t)

∂t
.

(13)

In this section, we are interested in the two-dimensional case and we, therefore, setm = 2.

We define Fn
i,j as the value of F (X, tn) on the i-th point of the two-dimensional grid in

the first dimension of size d1 and j-th point in the second dimension of size d2. Finding a

monotone scheme in the multidimensional case is a significantly more involved problem than

the single state variable one, leading to important instability and convergence issues if not

tackled properly. The first reason is that we now need to approximate the cross-derivative

of F (X, t) while ensuring monotonicity. For instance, the following approximation

∂2F (X, tn)

∂xi∂xj
≈
Fn
i+1,j+1 + Fn

i−1,j−1 − Fn
i+1,j−1 − Fn

i−1,j+1

4∆x
(14)

17

is not monotone because both Fn
i+1,j+1 and Fn

i−1,j−1 have the wrong sign. The second

reason is that even if we have identified the upwinding direction, there is no guarantee that

there is an actual node in this particular direction and one must take an interpolation in

order to estimate this particular point. In this case, this interpolation should be made in

a way that preserves monotonicity.

To do so, we follow Bonnans, Ottenwaelter, and Zidani (2004) with a fast algorithm

based on a walk on the Stern-Brocot tree. We accordingly write the upwind scheme that

preserves the monotonicity with the following finite-difference approximation for time t ∈ T

and vector of state variables xk. We define k as the coordinate vector of the position of

xk on the discrete multidimensional grid k ∈ Nm
0 . That is, if k = [2, 5]⊺, it means that x1,k

is the 2nd point in the first dimension and x2,k is the 5th point in the second dimension.

We rewrite the partial differential equation (13) as:

rkF
t
k = uk +

m∑
i=1

µ+i,k
F t
k+ei

− F t
k

∆xi,k+ei

+
m∑
i=1

µ−i,k
F t
k − F t

k−ei

∆xi,k−ei

(15)

+
∑

ξk∈Ξk

ηξk,k

(
F t
k+ξk

+ F t
k−ξk

− 2F t
k

)
+
F t+1
k − F t

k

∆t
, (16)

where ei is the directional vector such that the i-th component is equal to 1 and 0 otherwise.

The vectors ξk ∈ Ξk for the grid point k are found using the following stencil decomposition

consisting in a collection of nonnegative coefficients ηξ,k such that:∑
ξk∈Ξk

ηξ,kξi,kξj,k =
σi,kσj,k
2hihj

where hi is the distance between grid points in the i-th dimension and the elements of the

vectors ξk are integers. Using a stencil decomposition, that imposes that the coefficient

ηξ,k are nonnegative, guarantees that the implicit scheme is monotonic and converges to

the unique solution. The stencil decomposition is reminiscent of the one using eigenvalues,

with the important difference that the set of vectors is now constrained to belong to the

stencil. We characterize the size of the stencil with P as the highest norm of the elements

of the vectors ξk. We note that the following algorithm is limited to stencil decompositions

in two dimensions, which makes this method infeasible for a higher dimensional problem.

18

Consider the covariance matrix

Σ =

(
σ11 σ12

σ21 σ22

)

where σ12 = σ21. When a covariance matrix is diagonal dominant, we have the well-known

decomposition

Σ = (σ11 − |σ12|)

(
1

0

)
(1 0) + (σ22 − |σ12|)

(
0

1

)
(0 1) (17)

+ max (σ12, 0)

(
1

1

)
(1 1)−min (σ12, 0)

(
−1

1

)
(−1 1) .

If the matrix Σ is not diagonally dominant, the decomposition requires an algorithm to

find a stencil decomposition. It suffices to discuss the case when the matrix is such that

σ22 < σ12 < σ11 as it is easy to reduce to this case by permutation of variables and change

of sign of one of the element of the stencils. The stencil decomposition algorithm6 is as

follows:

Algorithm 2 Stencil Decomposition (Bonnans, Ottenwaelter, and Zidani, 2004)

1. Initiate with q0 = 0, p0 = 1, q′0 = 1, and p′0 = 1.

2. If Σ is diagonal dominant, use equation (17) and stop.

3. Begin iteration n by computing the following

ξ =

(
pn

qn

)
ξ′ =

(
p′n

q′n

)
X = ξξ⊺ X′ = ξ′ξ′

⊺

V =

 x11√
2x12

x22

 V′ =

 x′11√
2x′12
x′22

 V =
(
V V′) S =

 σ11√
2σ12

σ22

6We refer the reader to Bonnans, Ottenwaelter, and Zidani (2004) for an in-depth exposition.

19

4. Take the cross product of V and V′

N = V ×V′

and project S on the plane with normal vector N

K = S− τN

where

τ = ||N||−2N⊺S

and || · || is the Euclidean norm.

5. If p+ p′ ≥ P or ||S−K|| ≤ ε, then stop and the decomposition is such that

η1ξiξj + η2ξ
′
iξ

′
j ≈ σij ,

where

η = V\K.

The function \ is the solution in the least squares sense to the underdetermined system

of equations Vη = P.

6. If p+ p′ < P and ||S−P|| > ε, then q′′n = qn + q′n, p
′′
n = pn + p′n and compute

ξ′′ =

(
p′′n

q′′n

)
, X′′ = ξ′′ξ′′

⊺
, V′′ =

 x′′11√
2x′′12
x′′22

 , V =
(
V V′ V′′) ,

N = V ×V′′, τ = ||N||−2N⊺S, K = S− τN, η = V
−1

K.

• If each element of the vector η is positive, then stop and the decomposition is

20

such that

η1ξiξj + η2ξ
′
iξ

′
j + η3ξ

′′
i ξ

′′
j ≈ σij .

• If each element of the vector η is not positive and

sN⊺P ≤ 0,

where

H =

 0.5

0

0.5

 s = sign (N⊺H) ,

then qn+1 = qn, pn+1 = pn, q
′
n+1 = q′′n, p

′
n+1 = p′′n, and go to (3) for next

iteration n = n+ 1.

• If each element of the vector η is not positive and

sN⊺P > 0,

then qn+1 = q′′n, pn+1 = p′′n, q
′
n+1 = q′n, p

′
n+1 = p′n, and go to (3) for next

iteration n = n+ 1.

The intuition of Algorithm 2 is as follows. A two dimensional variance covariance matrix

can be represented in two dimensions (since σ12 = σ21, Σ has three coordinates). If the

3D representation of a variance-covariance matrix Σ is close enough to the projection of

Σ on the plane generated by the vectors X and X′, then we can generate Σ by a linear

combination of X and X′. If the 3D representation of a variance-covariance matrix Σ is

inside the convex cone generated by the vectors X, X′, and X′′, then we can generate A by

a conical combination of X, X′, and X′′. If none of the above is true, we need to update

X and X′ such that one of the two above is eventually true. If Σ is outside the half plane

generated by X and X′′, update such that q′ = q′′ and p′ = p′′. Otherwise, Σ has to be

outside of the half plane generated by X and X′′ and update such that q = q′′ and p = p′′.

As in the single dimensional case, we are looking for a solution that solves backward in

time, that is an implicit system of equations in F t
k given our parameters and guess from

21

the previous time iteration. We can rearrange equation (15) to get:

m∑
i=1

Di,kF
n+1
k−ei

+MkF
n+1
k + SkF

n+1
k +

m∑
i=1

Ui,kF
n+1
k+ei

−
∑

ξk∈Ξk

ηξk,k

(
Fn+1
k+ξk

+ Fn+1
k−ξk

)
(18)

= uk +
Fn
k

∆t
,

where

Di,k =
µ−i,k

∆xk−ei

,

Mk = rk +
1

∆t
+

m∑
i=1

µ+i,k
∆xk+ei

−
m∑
i=1

µ−i,k
∆xk−ei

,

Sk = 2
∑

ξk∈Ξk

ηξ,k,

Ui,k = −
µ+i,k

∆xk+ei

.

Later we will see that we need to keep Mk and Sk separate to handle points too close

from the boundary. Going backward in time, we solve for Fn+1 ≡ Ft as a function of

Fn ≡ Ft+1. In order to do so, we can now write (18) in matrix form as:

Fn+1 = A−1

[
u+

Fn

∆t

]
(19)

where

Fn =

Fn
k1

...

Fn
kD

 , u =

uk1

...

ukI

 ,

22

and

K =
[
k1 k2 · · · kD

]
=

1 2 · · · d1 1 2 · · · d1 · · · d1

1 1 · · · 1 2 2 · · · 2 · · · d2

1 1 · · · 1 1 1 · · · 1 · · · d3
...

...
...

...
...

...
...

...
...

...

1 1 · · · 1 1 1 · · · 1 · · · dn

.

We denote D =
∏n

i=1 di where di is the size of the n-dimensional grid in the i-th dimension,

and d0 = 1. The matrix A = AD +AM +AS +AU +Aη is such that

AM (j, j) =Mkj
,

AS (j, j) = Skj
,

AD
(
j, j −

∏i−1
l=0 dl

)
= Di,kj

, AU
(
j, j +

∏i−1
l=0 dl

)
= Ui,kj

,

Aη
(
j, j −

∑n
i=1 ξi,k

∏i−1
l=0 dl

)
= −ηξ,kj

, Aη
(
j, j +

∑n
i=1 ξi,k

∏i−1
l=0 dl

)
= −ηξ,kj

.

Now that we have our monotonic approximation, we can apply algorithm 3 exactly as

we did with one dimension. Here as well, we are not assuming any boundary condition

on the edge of the grid for the value function Fn in terms the vector of state variables X.

Implicitly, we assume that we do not need to do so because the value function will drift

right at the left boundary and left at the right boundary. This is equivalent to assuming

that there exists an interior absorbing stochastic steady state or that µi,k > 0 on the left

boundary and µi,k < 0 on the right boundary for all dimensions i.

6 Example Application

In this section we present an example application of the numerical methods presented in

this paper to a general equilibrium model with two state variables. We present a general

23

extension of Brunnermeier and Sannikov (2014) where two agents have Epstein and Zin

(1989) utility functions and aggregate volatility is time-varying. The framework can easily

be modified to any other general equilibrium framework with two state variables.

6.1 Model Definition

Preferences There are two agent types: : households h ∈ H and intermediaries i ∈ I.

Both agents have stochastic differential utility, as developed by Duffie and Epstein (1992).

The utility of agent j over his consumption process cjt is defined as

U j
t = Et

(∫ ∞

t
f
(
cjs, U

j
s

)
ds

)
.

The function fj(c, u) is a normalized aggregator of consumption and continuation value in

each period defined as

f(c, U) =
1− γ

1− 1/ζ
U

[(
c

((1− γ)U)1/(1−γ)

)1−1/ζ

− ρ

]

where ρ is the rate of time preference, γ is the coefficient of relative risk aversion, and

ζ determines the elasticity of intertemporal substitution. Each agent chooses its optimal

consumption cjt , investment risk σrt , and portfolio weight wj
t on capital holdings in order

to maximize discounted infinite life time expected utilities U j
t . At any time, the following

budget constraint has to be satisfied:

dnjt

njt
=
((
1− wj

t

)
rt + wj

tµ
r,j
t − cjt

)
dt+ wj

tσ
q,σ
t dZσ

t + wj
t

(
σt + σq,kt

)
dZk,

where njt is the wealth of agent j, cjt = cjt/n
j
t his consumption rate, and the portfolio weight

wj
t are choice variables. Zσ

t and Zk
t are two standard Brownian motions that hit aggregate

volatility and capital growth, respectively.

Technology The production technology in the economy is given by:

yjt =
(
aj − ιjt

)
kjt

24

and

dkt
kt

= µkt dt+ σtdZ
k
t ,

where µkt is given by

µkt = ψtΦ(ι
i
t) + (1− ψt)Φ(ι

h
t),

where Φ(·) is a concave investment function and ψt is the share of capital in the hands of

intermediaries:

ψt ≡
wi
tn

i
t

wi
tn

i
t + wh

t n
h
t

.

In this example, we work with the following functional form for the investment function:

Φ(ιjt) = log(1 + κpι
j
t)/κp − δj .

The price of a unit of capital is qt. The volatility of capital returns follows a diffusion:

dσt
σt

= κ
(
σ − σt

)
dt+ ςdZσ

t .

The stochastic law of motion of qt follows

dqt
qt

= µqtdt+ σq,σt dZσ
t + σq,kt dZk

t .

The variables µqt , σ
q,k
t , and σq,σt are to be determined endogenously. We can use Ito’s

lemma to write the process of the value of capital:

d(qtk
j
t)

qtk
j
t

=
(
Φt + µqt + σtσ

q,k
t

)
dt+ σq,σt dZσ

t +
(
σt + σq,kt

)
dZk.

Hence, the return on physical asset is given by

drjt =

(
aj − ιt
qt

+Φt + µqt + σtσ
q,k
t

)
︸ ︷︷ ︸

µr,j
t

dt+ σq,σt dZσ
t +

(
σt + σq,kt

)
dZk.

25

6.2 Model Solution

Solving the HJB We will guess and verify that the homotheticity of preferences allows

us to write the value function for agents of type j as:

U
(
njt , ξ

j
t

)
=

(
njt

)1−γ
ξjt

1− γ
, (20)

where variable ξjt follows

dξjt

ξjt
= µξ,jt dt+ σξ,σ,jt dZσ

t + σξ,k,jt dZk
t .

We can write the HJB equation corresponding to the problem of agent j as

0 = max
cjt ,ι

j
t ,w

j
t

f
(
cjtn

j
t , U

j
t

)
(21)

+
((
1− wj

t

)
rt + wj

tµ
r,j
t − cjt

)
njtUn(n

j
t , ξ

j
t) + µξ,jt ξjtUξ(n

j
t , ξ

j
t)

+
1

2

[(
wj
tσ

q,σ
t njt

)2
+
(
wj
t

(
σt + σq,kt

)
njt
)2]

Unn(n
j
t , ξ

j
t)

+
1

2

[(
σξ,σ,jξjt

)2
+
(
σξ,k,jξjt

)2]
Uξξ(n

j
t , ξ

j
t)

+

[
wj
tσ

q,σ
t njtσ

ξ,σ,j
t ξt + wj

t

(
σt + σq,kt

)
njtσ

ξ,k,j
t ξjt

]
Unξ(n

j
t , ξ

j
t).

Substituting the guess from equation (20), the HJB becomes

0 = max
cjt ,ι

j
t ,w

j
t

1

1− 1/ζ

(
cjt

)1−1/ζ

(
ξjt

) 1−1/ζ
1−γ

− ρ

+ (1− wj
t)rt + wj

tµ
r,j
t − cjt +

µξ,j

1− γ
(22)

−γ
2

(
wj
tσ

q,σ
t

)2 − γ

2

(
wj
tσt + wj

tσ
q,k
t

)2
+ wj

tσ
q,σ
t σξ,σ,jt + wj

t

(
σt + σq,kt

)
σξ,k,jt .

26

Optimality Conditions The first order conditions with respect to cjt , ι
j
t , and wj

t are

given by

(
cjt

)−1/ζ
=
(
ξjt

) 1−1/ζ
1−γ

,

1/qt = Φι(ιt),

µr,jt − rt − γwj
t

(
σq,σt

)2 − γwj
t

(
σt + σq,kt

)2
+ σq,σt σξ,σ,jt +

(
σt + σq,kt

)
σξ,k,jt = 0.

Plugging in the optimality conditions in the HJB gives:

0 =
1

1− 1/ζ

(
cjt − ρ

)
+ rt − cjt +

γ

2

(
wj
tσ

q,σ
t

)2
+
γ

2

(
wj
tσt + wj

tσ
q,k
t

)2
+

µξ,j

1− γ
. (23)

Market Clearing Conditions We can use the market clearing condition for consump-

tion to find qt: (
citηt + cht (1− ηt)

)
qt = ψt(a

i − ιt) + (1− ψt)(a
h − ιt).

Similarly, we use the market clearing condition for capital to find rt:

wi
tηt + wh

t (1− ηt) = 1.

Numerical Procedure We want to solve the model recursively in a minimal number of

state variables summarizing time variations in the equilibrium. We start by providing the

definition of such an equilibrium in the state variables {ηt, σt}, where ηt is defined as the

share of wealth in the hands of the intermediaries:

ηt =
nit

nht + nit
=

nit
qtkt

.

27

We can therefore use Ito’s lemma to write the law of motion of ηt as:

dηt
ηt

=

(
rt + wi

t(µ
r,j
t − rt)− cit − Φt − µqt − σtσ

q,k
t (24)

− ωi
t (σ

q,σ
t)

2
+ (σq,σt)

2
+
(
σt + σq,kt

)2
− wi

t

(
σt + σq,kt

)2)
dt

+
(
wi
t − 1

)
σq,σt dZσ

t +
(
wi
t − 1

)(
σt + σq,kt

)
dZk.

Definition 1 A Markov Equilibrium in {η, σ} is a set of functions q(η, σ), ψ(η, σ), r(η, σ),

wi(η, σ), wh(η, σ), ι(η, σ) , ci(η, σ), ch(η, g), ξi(η, σ) and ξh(η, σ) and diffusions µη(η, σ),

ση(η, σ), µq(η, σ), σq(η, σ) such that:

1. ξi and ξh solve their respective HJB equations (23).

2. Taking prices q, r and the law of motion of η and q as given, policy variables wi, wh,

ι, ci, ch solve their respective optimization problems.

3. Law of motions for the state variables η and σ are given by (??) and (24).

Algorithm 3 Implicit Euler for Two-Dimensional General Equilibrium Model

1. Define a finite grid over the state variables η, σ and set guess for ξin and ξhn at the

initial iteration n = 0.

2. Given ξin and ξhn solve for all equilibrium variables q(η, σ), ψ(η, σ), r(η, σ), wi(η, σ),

wh(η, σ), ι(η, σ) , ci(η, σ), ch(η, g), ξi(η, σ) and ξh(η, σ) and diffusions σq,σ(η, σ),

σq,k(η, σ), σξ,σ,j(η, σ), σξ,k,j(η, σ), and µq(η, σ) using first order conditions and mar-

ket clearing conditions. One can solve this nonlinear system of equation using a

Newton-Raphson method.7

3. Solve for the next iteration of ξin+1 and ξhn+1 using the method described in Section

5.2.

4. Iterate on 2-3 until convergence.

7To provide a good first guess for the Newton-Raphson algorithm, we solve the nonlinear system of
equation setting the derivatives of q(σ, η) to 0.

28

We can now solve the model according to algorithm 3. The procedure works in two

steps. At each iteration, we first solve for all equilibrium variables recursively in the state

variables and then iterate on the value function multiplier. The key for this second step

is to use the finite difference approximation that preserves the monotonicity of the HJB

equation as described in section 5. Since we get µξ,j from (23), we can apply the method

of finite difference to

ξj(ηt, σt)µ
ξ,j
t = ξjσ(ηt, σt)µ

σ
t σt + ξjη(ηt, σt)µ

η
t ηt +

1

2
ξjσσ(ηt, σt)

(
ςσt
)2

+
1

2
ξjηη(ηt, σt)

[((
ωi
t − 1

)
σq,σt ηt

)2
+
((
ωi
t − 1

)(
σt + σq,kt

)
ηt
)2]

+ ξjση(ηt, σt)ςσt
(
ωi
t − 1

)
σq,σt ηt + ξjt (ηt, σt).

By applying Ito’s lemma, we can find σq,σt , σq,kt , σξ,σ,jt , σξ,k,jt , and µqt from:

q(σt, ηt)σ
q,σ
t = qσ(σt, ηt)ςσt + qη(σt, ηt)

(
wi
t − 1

)
σq,σt ηt,

q(σt, ηt)σ
q,k
t = qη(σt, ηt)

(
wi
t − 1

)(
σt + σq,kt

)
ηt,

ξj(σt, ηt)σ
ξ,σ,j
t = ξjσ(σt, ηt)ςσt + ξjη(σt, ηt)

(
wi
t − 1

)
σq,σt ηt,

ξj(σt, ηt)σ
ξ,k,j
t = ξjη(σt, ηt)

(
wi
t − 1

)(
σt + σq,kt

)
ηt,

q(σt, ηt)µ
q
t = qσ(σt, ηt)µ

σ
t σt + qη(σt, ηt)µ

η
t ηt +

1

2
qσσ(σt, ηt)

(
ςσt
)2

+
1

2
qηη(σt, ηt)

[((
ωi
t − 1

)
σq,σt ηt

)2
+
((
ωi
t − 1

)(
σt + σq,kt

)
ηt
)2]

+ qση(σt, ηt)ςσt
(
ωi
t − 1

)
σq,σt ηt.

7 Numerical Implementation: PyMacroFin

PyMacroFin is an open source package8 developed in Python by the authors that imple-

ments the numerical solution methodology presented in this paper. PyMacroFin allows

users to input a model to be solved using an intuitive object-oriented interface in Python.

In this section we introduce the package functionality by illustrating how the package can

be used to solve the example application presented in the previous section as well as a

8The package is available for download via the PyPi package manager:
https://pypi.org/project/PyMacroFin/. Download instructions are also included in the package
documentation: https://adriendavernas.com/pymacrofin/index.html.

29

one-dimensional example from Brunnermeier and Sannikov (2014).

7.1 Model Definition

The core of an implementation of a model in PyMacroFin is a model object which will

hold model equations, parameters, settings, as well as results. A model object should be

defined and given a name as follows:

from PyMacroFin.model import macro_model

m = macro_model(name='BruSan')

Model parameters (constants) are specified and given values using the following command:

m.params.add_parameter('parameter_name', parameter_value).

Model variables are defined differently depending on the type of variable. State variables

are defined with the method m.set state(), value variables are defined with the method

m.set value(), endogenous variables are defined by the method m.set endog, and in-

termediate variables are defined with m.equation() commands. In our model, the state

variables are ηt and σt which we define as e and z, respectively, as follows:

m.set_state(['e','z'])

This sets the state variables of the model. The value function or wealth multipliers ξit and

ξht will be defined as vi and vh, respectively, as follows:

m.set_value(['vi','vh'])

Endogenous variables are variables whose values are solved for using market clearing and

first order conditions at each iteration backward through the transient, or false time, di-

mension. In our example, these include qt, ψt, µ
η
t , σ

q,k
t , and σq,σt . This is defined as

follows:

m.set_endog(['q','psi','mue','sigqk','sigqs'])

30

Although not demonstrated here for expository purposes, these variable definition com-

mands also include optional arguments to provide initial numeric guess values, in the form

of either constants or functions of state variable values to provide variation across the finite

difference grid, for the values of the variables as well as optional arguments to provide latex

rendering of variable names for visualization purposes. For details on command syntax the

reader is referred to the package documentation.9 Intermediate variables can be assigned

by defining equations in terms of endogenous, state, or value variables or other intermediate

variables. An example is wi
t = ψt/ηt which we define via the following command:

m.equation("wi = psi/e")

To inform the package how to solve the equilibrium at each node of the finite difference

grid at each transient iteration, a system of equations is required of the same dimension as

the vector of endogenous variables. In our example, we use the definition of µηt , the market

clearing condition for consumption, a combination of the first order conditions for wi
t and

wh
t , and definitions of σq,kt and σq,σt from Ito’s Lemma. All other necessary equilibrium

conditions not in these equations are included in intermediate variable definitions leading

to these equations. We define these equations in the form 0 = f(X) where X is the vector

of endogenous variables. The equations are as follows:

0 =
κL
ηt

(η − ηt) + (1− ηt)(µ
n,i
t − µqt − µkt − σtσ

q,k
t + (σq,kt + σt)

2 (25)

+ (σq,σt)2 − wi(σq,σt)2 − wi
t(σ

q,k
t + σt)

2)− µηt

0 =(citηt + cht (1− ηt))qt − (ai − ιit)ηtw
i
t − (ah − ιht)(1− ηt)w

h
t (26)

0 =µr,it − µr,ht + γhwh
t ((σ

q,σ
t)2 + (σt + σq,kt)2)− γiwi

t((σ
q,σ
t)2 + (σt + σq,kt)2) (27)

+ σq,σt σξ,i,σt + (σt + σq,kt)σξ,i,kt − σq,σt σξ,h,σt − (σt + σq,kt)σξ,h,kt

0 =(ςqσσt + ση,σt qηη)− σq,σt qt (28)

0 =ση,kt qηη − σq,kt qt (29)

Endogenous equations, using Equation 29 as an example, are input as follows:

m.endog_equation("sigek*qe*e-sigqk*q")

where ση,kt is defined as sigek, qη is defined as qe, and qt is defined as q.

9https://adriendavernas.com/pymacrofin/index.html

31

The variables associated with the HJB equations must also be specified to inform the

package how to iterate backward through the transient dimension to find the steady-state

equilibrium solution to the system. The partial differential equation takes the following

form as outlined in Section 5:

r(X)F (X, t) = u(X) +

m∑
i=1

µi(X)
∂F (X, t)

∂xi
(30)

+

m∑
i=1

m∑
j=1

σi(X)σj(X)

2

∂2F (X, t)

∂xi∂xj
+
∂F (X, t)

∂t

where xi are state variables, F (X, t) are value variables, and X is a vector of all variables.

The m.hjb equation() method is used to inform the model object of the values to be used

in this partial differential equation. The method links variables in Equation 30 to variables

defined in a model. In our example, the drifts µi(X) in Equation 30 are linked to µηt ηt and

µσt σt by the following commands:

m.hjb_equation('mu','e','mue*e')

m.hjb_equation('mu','z','muz*z')

where the first two arguments specify that we are setting the value for the drift, µi(X),

for state variable i = ηt, and the last argument specifies the value to be used in terms of

variables defined as endogenous, value, state, or intermediate variables (mue representing

µηt and muz representing µσt). The details of linking syntax for other variables in Equation

30 is left to the package documentation.

Although unnecessary in our example, PyMacroFin also includes flexible methods for

defining boundary conditions for endogenous variables, either as functions or as constants.

PyMacroFin also includes flexible constraint management, such that a different system of

endogenous equations may be solved in the case of a binding constraint. For details on

these additional features the reader is directed to the package documentation.

7.2 Model Solution

Once a model is defined in PyMacroFin, running the model is very simple:

m.run()

32

Updates will be printed to Python standard output while iterations progress, if requested,

and solutions will be saved to a user specified location. A live dashboard with 2-dimensional

or 3-dimensional plots of requested variable values can also be displayed while the model

solves. For syntax for these requests the reader is directed to the package documentation.

The size of the finite difference grid, error tolerances, minimum and maximum iterations,

and time step used can be specified by setting model options. For example, the time step

can be set as follows before running the model:

m.options.dt = 0.1

Full documentation of all available options is detailed in the package documentation. The

package also includes a method which can be used to obtain the stationary distribution of

a system using the Kolmogorov Forward Equation from arrays of values of state variables

with associated drifts and volatilities. The solution of the model from the previous section

as well as the code to produce the solution are provided in the Appendix. As an example

of a one-dimensional solution, the solution to the model of Brunnermeier and Sannikov

(2014) and code used to produce the solution are also included in the Appendix. On a

Macbook Pro with a M2 chip, the method converges to a solution in less than 2 minutes.

8 Conclusion

In this article, we provide a fast method to solve globally for a broad class of continuous time

macro-economic models with Brownians shocks and up to two endogenous (and correlated)

state variables. Due to its speed, generality, and robustness, this method opens the door

to further research in macroeconomics and asset pricing. For instance, it could be used to

solve models with banks with interest for monetary policy or more complex asset pricing

model involving heterogeneous agents, financial frictions, and production. The speed of the

method also makes it possible to run estimations on the global model without linearization

and capture complex amplification dynamics. We also present an open source software

package which implements the solution methodology and allows for flexible and intuitive

model definitions.

33

References

S. Basak and D. Cuoco. An equilibrium model with restricted stock market participation.

Review of Financial Studies, 11(2):309–341, 1998.

F. Bonnans, E. Ottenwaelter, and H. Zidani. A fast algorithm for the two dimensional HJB

equation of stochastic control. ESAIM: Mathematical Modelling and Numerical Analysis,

38(4):723–735, 2004.

M. Brunnermeier and Y. Sannikov. A macroeconomic model with a financial sector. The

American Economic Review, 104(2):379–421, 2014.

M. Brunnermeier and Y. Sannikov. Macro, money, and finance: A continuous-time ap-

proach. Handbook of Macroeconomics, 2:1497–1545, 2016.

G. Candler. Finite-difference methods for continuous-time dynamic programming. In

R. Marimon and A. Scott, editors, Computational Methods for the Study of Dynamic

Economies, chapter 8, pages 172–194. Oxford University Press, Oxford, 1999.

S. Di Tella. Uncertainty shocks and balance sheet recessions. The Journal of Political

Economy, 125(26):2038–2081, 2017.

S. Di Tella and P. Kurlat. Why are bank balance sheets exposed to monetary policy?

Working Paper 24076, NBER, 2016.

I. Drechsler, A. Savov, and P. Schnabl. Uncertainty shocks and balance sheet recessions.

The Journal of Finance, 73(1):317–373, 2017.

V. Duarte. Machine learning for continuous-time finance. Working paper, University of

Illinois Urbana-Champaign, 2022.

D. Duffie and L. Epstein. Stochastic differential utility. Econometrica, 60(2):353–394, 1992.

L. Epstein and S. Zin. Substitution, risk aversion, and the temporal behavior of consump-

tion and asset returns: A theoretical framework. Econometrica, 57(4):937–969, 1989.

G. Gopalakrishna. Aliens and continuous time economics. Working paper, Swiss Finance

Institute at École Polytechnique Fédérale de Lausanne, October 2022.

34

L. P. Hansen, F. Tourre, and P. Khorrami. Comparative valuation dynamics in models with

financing restrictions. Technical report, University of Chicago and Northwestern University,

2019.

Z. He and A. Krishnamurthy. Intermediary asset pricing. The American Economic Review,

103(2):732–770, 2013.

R. Merton. An intertemporal capital asset pricing model. Econometrica, 41(5):867–887,

1973.

P. Niyogi. Introduction to Computational Fluid Dynamics. Pearson Education India, 2006.

M. Sauzet. Projection methods via neural networks for continuous-time models. Working

Paper 3981838, SSRN, 2022.

D. Silva. The risk channel of unconventional monetary policy. Working paper, Krannert

School of Management at Purdue University, 2016.

A. Tourin. An introduction to finite difference methods for pdes in finance. Technical

report, Fields Institute, 2011.

35

Appendix

A Code and Results

A.1 Model with Two State Variables

In this section we provide the code and results for the model presented in Section 6.

A.1.1 Code

from PyMacroFin.model import macro_model

import numpy as np

import pandas as pd

import time

import PyMacroFin.utilities as util

def define_model():

m = macro_model(name='BruSan')

m.set_endog(['q','psi','mue','sigqk','sigqs'],init=[1,0.95,0,0,0],

latex=[r'q',r'ψ',r'μ^{η}',

r'$\sigma^{q,k}$',r'$\sigma^{q,\sigma}$'])

m.prices = ['q']

m.set_state(['e','z'])

m.set_value(['vi','vh'],init=[0.04,0.04],latex=[r'ξ^i',r'ξ^h'])

m.params.add_parameter('gammai',2)

m.params.add_parameter('gammah',3)

m.params.add_parameter('ai',.1)

m.params.add_parameter('ah',.1)

m.params.add_parameter('rhoi',.04)

m.params.add_parameter('rhoh',.04)

m.params.add_parameter('sigz',.01)

m.params.add_parameter('sigbar',.5)

m.params.add_parameter('deltai',.04)

m.params.add_parameter('deltah',.04)

m.params.add_parameter('kappa_p',2)

m.params.add_parameter('kappa_z',5)

36

m.params.add_parameter('zetai',1.15)

m.params.add_parameter('zetah',1.15)

m.params.add_parameter('kappa_l',.9)

m.params.add_parameter('ebar',0.5)

m.equation("sigma = z")

m.equation("wi = psi/e")

m.equation("wh = (1-psi)/(1-e)")

m.equation("ci = vi**((1-zetai)/(1-gammai))")

m.equation("ch = vh**((1-zetah)/(1-gammah))")

m.equation("iotai = (q-1)/kappa_p")

m.equation("iotah = (q-1)/kappa_p")

m.equation("phii = log(1+kappa_p*iotai)/kappa_p-deltai")

m.equation("phih = log(1+kappa_p*iotah)/kappa_p-deltah")

m.equation("muz = kappa_z*(sigbar-sigma)")

m.equation("muk = psi*phii+(1-psi)*phih")

m.equation("signis = wi*sigqs")

m.equation("signhs = wh*sigqs")

m.equation("signik = wi*(sigqk+sigma)")

m.equation("signhk = wh*(sigqk+sigma)")

m.equation("siges = e*(1-e)*(signis -sigqs)")

m.equation("sigek = e*(1-e)*(signik - (sigqk+sigma))")

m.equation("sigxik = d(vi,e)/vi*sigek*e")

m.equation("sigxhk = d(vh,e)/vh*sigek*e")

m.equation("sigxis = d(vi,e)/vi*siges*e + d(vi,z)/vi*sigz*z")

m.equation("sigxhs = d(vh,e)/vh*siges*e + d(vh,z)/vh*sigz*z")

m.equation("muq = d(q,e)/q*mue*e + d(q,z)/q*muz*z + \

1/2*d(q,e,e)/q*((siges*e)**2 + (sigek*e)**2) + \

1/2*d(q,z,z)/q*(sigz*z)**2 + d(q,e,z)/q*siges*e*sigz*z")

m.equation("muri = (ai-iotai)/q + phii + muq + sigma*sigqk")

m.equation("murh = (ah-iotah)/q + phih + muq + sigma*sigqk")

m.equation("r = muri - gammai*wi*((sigqs**2)+(sigma+sigqk)**2) + \

sigqs*sigxis + (sigqk+sigma)*sigxik")

m.equation("muni = r + wi*(muri-r)-ci")

m.equation("munh = r + wh*(murh-r)-ch")

m.endog_equation("kappa_l/e*(ebar-e)+(1-e)*(muni - muk - muq\

- sigma*sigqk + (sigqk+sigma)**2 + sigqs**2 \

- wi*sigqs**2 - wi*(sigqk+sigma)**2) - mue")

m.endog_equation("(ci*e+ch*(1-e))*q - psi*(ai-iotai) - (1-psi)*(ah-iotah)")

m.endog_equation("muri - murh + gammah*wh*((sigqs**2)+(sigqk+sigma)**2) - \

37

gammai*wi*((sigqs)**2+(sigqk+sigma)**2) + sigqs*sigxis + \

(sigqk+sigma)*sigxik - sigqs*sigxhs - (sigqk+sigma)*sigxhk")

m.endog_equation("(sigz*z*d(q,z) + siges*e*d(q,e))-sigqs*q")

m.endog_equation("sigek*e*d(q,e) - sigqk*q")

m.hjb_equation('mu','e','mue*e')

m.hjb_equation('mu','z','muz*z')

m.hjb_equation('sig','e',"(siges*e)**2 + (sigek*e)**2")

m.hjb_equation('sig','z',"(sigz*z)**2")

m.hjb_equation('sig','cross',"siges*e*sigz*z")

m.hjb_equation('u','vi',0)

m.hjb_equation('u','vh',0)

m.hjb_equation('r','vi',"-1*(1-gammai)*(1/(1-1/zetai)*(ci-(rhoi+kappa_l))\

+r-ci+gammai/2*(wi*(sigqs)**2 +wi*(sigqk+sigma)**2))")

m.hjb_equation('r','vh',"-1*(1-gammah)*(1/(1-1/zetah)*(ch-(rhoh+kappa_l))\

+r-ch+gammah/2*(wh*(sigqs)**2 +wh*(sigqk+sigma)**2))")

m.options.loop = False

m.options.outer_plot = True

m.options.n0 = 50

m.options.n1 = 50

m.options.start0 = 0.05

m.options.start1 = 0.05

m.options.end0 = 0.95

m.options.end1 = 0.95

m.options.inner_solver = 'newton-raphson'

m.options.parallel = True

return m

if __name__=='__main__':

tic = time.time()

m = define_model()

util.deploy_dash(m)

m.run()

toc = time.time()

print('elapsed time: {}'.format(toc-tic))

A.1.2 Results

38

F
ig
u
re

2
:
E
n
d
o
g
en

o
u
s
va
ri
a
b
le

so
lu
ti
o
n
s
fo
r
th
e
m
o
d
el

p
re
se
n
te
d
in

S
ec
ti
o
n
6
.

39

A.2 Model with One State Variable

In this section we present the code and results replicating the model of Brunnermeier and

Sannikov (2014).

A.2.1 Code

from PyMacroFin.model import macro_model

import numpy as np

import pandas as pd

import time

import PyMacroFin.utilities as util

from PyMacroFin.system import system

initial guess function for endogenous variables

def init_fcn(e,c):

if e<.3:

q = 1.05+.06/.3*e

psi = 1/.3*e

sigq = -.1*(e-.3)**2+.008

else:

psi = 1

sigq = 0

q = 1.1 - .03/.7*e

return [q,psi]

boundary condition function for eta == 0

def eta_minimum(d):

psi = 0

q = (2*d['ah']*d['kappa']+(d['kappa']*d['r'])**2.+1)**0.5 - d['kappa']*d['r']

return [q,psi]

def define_model(npoints):

m = macro_model(name='BruSan14_log_utility')

m.set_endog(['q','psi'],init=[1.05,0.5])

m.prices = ['q']

m.set_state(['e'])

40

m.params.add_parameter('sig',.1)

m.params.add_parameter('deltae',.05)

m.params.add_parameter('deltah',.05)

m.params.add_parameter('rho',.06)

m.params.add_parameter('r',.05)

m.params.add_parameter('ae',.11)

m.params.add_parameter('ah',.07)

m.params.add_parameter('kappa',2)

m.equation('iota = (q**2-1)/(2*kappa)')

m.equation('phi = 1/kappa*((1+2*kappa*iota)**0.5-1)')

m.equation('sigq = (((ae-ah)/q+deltah-deltae)/(psi/e-(1-psi)/(1-e)))**0.5 - sig',plot=True,latex=r'σ^q')

m.equation('sige = (psi-e)/e*(sig+sigq)')

m.equation('mue = sige**2 + (ae-iota)/q + (1-psi)*(deltah-deltae)-rho')

m.equation('er = psi/e*(sig+sigq)**2',plot=True,latex=r'$E[dr_t^k-dr_t]/dt$')

m.equation('sigee = sige*e',plot=True,latex=r'$\sigma^{\eta} \eta$')

m.equation('muee = mue*e',plot=True,latex=r'$\mu^{\eta} \eta$')

m.endog_equation('q*(r*(1-e)+rho*e) - psi*ae - (1-psi)*ah + iota')

m.endog_equation('(psi-e)*d(q,e) - q*(1-sig/(sig+sigq))')

m.hjb_equation('mu','e','mue')

m.hjb_equation('sig','e','sige')

m.constraint('psi','<=',1,label='upper_psi')

m.constraint('psi','>=',0,label='lower_psi')

m.boundary_condition({'e':'min'},eta_minimum)

s = system(['upper_psi'],m)

s.equation('sigq = sig/(1-(psi-e)*d(q,e)/q) - sig')

s.endog_equation('1 - psi')

s.endog_equation('q*(r*(1-e)+rho*e) - ae + iota')

m.systems.append(s)

m.options.ignore_HJB_loop = True

m.options.import_guess = False

m.options.guess_function = init_fcn

m.options.inner_plot = False

m.options.outer_plot = False

41

m.options.final_plot = True

m.options.n0 = npoints

m.options.start0 = 0.0

m.options.end0 = 0.95

m.options.inner_solver = 'least_squares'

m.options.derivative_plotting = [('q','e')]

m.options.min_iter_outer_static = 5

m.options.min_iter_inner_static = 0

m.options.max_iter_outer_static = 50

m.options.return_solution = True

m.options.save_solution = False

m.options.price_derivative_method = 'backward'

return m

if __name__=='__main__':

npoints = 100

tic = time.time()

m = define_model(npoints)

df = m.run()

toc = time.time()

print('elapsed time: {}'.format(toc-tic))

42

A.2.2 Results

Figure 3: Endogenous variable solutions for the model from Brunnermeier and Sannikov (2014).

43

F
ig
u
re

4
:
S
ec
o
n
d
a
ry

va
ri
a
b
le

so
lu
ti
o
n
s
fo
r
th
e
m
o
d
el

fr
o
m

B
ru
n
n
er
m
ei
er

a
n
d
S
a
n
n
ik
ov

(2
0
1
4
).

44

	Introduction
	The General Portfolio Problem
	Relaxation of Nonlinearity
	A Finite-Difference Approach
	Introduction to the Finite-Difference Scheme
	Instability in the Advection Equation
	An Implicit Scheme

	A Monotonic Scheme for the Portfolio Problem
	Finite-Difference Scheme in One Dimension
	Finite-Difference Scheme in Two Dimensions

	Example Application
	Model Definition
	Model Solution

	Numerical Implementation: PyMacroFin
	Model Definition
	Model Solution

	Conclusion
	Appendices
	Code and Results
	Model with Two State Variables
	Code
	Results

	Model with One State Variable
	Code
	Results

